
TraitsUI 4 User Manual
Release 6.0.0

Enthought, Inc.

April 12, 2018

Contents

1 TraitsUI 6.0 User Manual 1
1.1 TraitsUI 6.0 User Manual . 1
1.2 Introduction . 2
1.3 The View and Its Building Blocks . 4
1.4 Customizing a View . 11
1.5 Advanced View Concepts . 16
1.6 Controlling the Interface: the Handler . 23
1.7 Introduction to Trait Editor Factories . 30
1.8 The Predefined Trait Editor Factories . 36
1.9 Advanced Trait Editors . 63
1.10 “Extra” Trait Editor Factories . 84
1.11 Advanced Editor Adapters . 85
1.12 Tips, Tricks and Gotchas . 95
1.13 Appendix I: Glossary of Terms . 96
1.14 Appendix II: Editor Factories for Predefined Traits . 98

2 TraitsUI 6.0 API Reference 101
2.1 traitsui package . 101

3 TraitsUI 6.0 Tutorials 181
3.1 Writing a graphical application for scientific programming using TraitsUI 6.0 181

4 TraitsUI 6.0 Demos 201
4.1 Standard Editors . 201
4.2 Advanced Demos . 202

5 Traits UI Changelog 205
5.1 Release 6.0.0 . 205
5.2 Release 5.2.0 . 207
5.3 Release 5.1.0 . 207
5.4 Release 5.0.0 . 208
5.5 Release 4.5.1 . 209
5.6 Release 4.5.0 . 209
5.7 Release 4.4.0 . 209
5.8 Traits 3.5.0 (Oct 15, 2010) . 210
5.9 Traits 3.4.0 (May 26, 2010) . 210
5.10 Traits 3.3.0 (Feb 24, 2010) . 211

i

5.11 Traits 3.2.0 (July 15, 2009) . 211

6 TraitsUI: Traits-capable windowing framework 213
6.1 Example . 213
6.2 Important Links . 214
6.3 Installation . 214
6.4 Running the Test Suite . 215

7 Indices and tables 217

Python Module Index 219

ii

CHAPTER 1

TraitsUI 6.0 User Manual

1.1 TraitsUI 6.0 User Manual

Authors Lyn Pierce, Janet Swisher, and Enthought Developers

Version Document Version 4

Copyright 2005, 2008-2018 Enthought, Inc. All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source or derived format (for example, Portable Document Format or Hypertext Markup
Language) must retain the above copyright notice, this list of conditions and the following disclaimer.

• Neither the name of Enthought, Inc., nor the names of contributors may be used to endorse or promote products
derived from this document without specific prior written permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners.

Enthought, Inc.
515 Congress Avenue
Suite 2100

1

TraitsUI 4 User Manual, Release 6.0.0

Austin TX 78701
1.512.536.1057 (voice)
1.512.536.1059 (fax)
http://www.enthought.com
info@enthought.com

1.2 Introduction

This guide is designed to act as a conceptual guide to TraitsUI, an open-source package built and maintained by
Enthought, Inc. The TraitsUI package is a set of GUI (Graphical User Interface) tools designed to complement Traits,
another Enthought open-source package that provides explicit typing, validation, and change notification for Python.
This guide is intended for readers who are already moderately familiar with Traits; those who are not may wish to
refer to the Traits User Manual for an introduction. This guide discusses many but not all features of TraitsUI. For
complete details of the TraitsUI API, refer to the TraitsUI API Reference.

1.2.1 The Model-View-Controller (MVC) Design Pattern

A common and well-tested approach to building end-user applications is the MVC (“Model-View-Controller”) design
pattern. In essence, the MVC pattern the idea that an application should consist of three separate entities: a model,
which manages the data, state, and internal (“business”) logic of the application; one or more views, which format the
model data into a graphical display with which the end user can interact; and a controller, which manages the transfer
of information between model and view so that neither needs to be directly linked to the other. In practice, particularly
in simple applications, the view and controller are often so closely linked as to be almost indistinguishable, but it
remains useful to think of them as distinct entities.

The three parts of the MVC pattern correspond roughly to three classes in the Traits and TraitsUI packages.

• Model: HasTraits class (Traits package)

• View: View class (TraitsUI package)

• Controller: Handler class (TraitsUI package)

The remainder of this section gives an overview of these relationships.

The Model: HasTraits Subclasses and Objects

In the context of Traits, a model consists primarily of one or more subclasses or instances of the HasTraits class, whose
trait attributes (typed attributes as defined in Traits) represent the model data. The specifics of building such a model
are outside the scope of this manual; please see the Traits User Manual for further information.

The View: View Objects

A view for a Traits-based application is an instance of a class called, conveniently enough, View. A View object is
essentially a display specification for a GUI window or panel. Its contents are defined in terms of instances of two
other classes: Item and Group.1 These three classes are described in detail in The View and Its Building Blocks; for the
moment, it is important to note that they are all defined independently of the model they are used to display.

Note that the terms view and View are distinct for the purposes of this document. The former refers to the component
of the MVC design pattern; the latter is a TraitsUI construct.

1 A third type of content object, Include, is discussed briefly in Include Objects, but presently is not commonly used.

2 Chapter 1. TraitsUI 6.0 User Manual

http://www.enthought.com
mailto:info@enthought.com
http://docs.enthought.com/traits/index.html
http://github.enthought.com/traits/index.html

TraitsUI 4 User Manual, Release 6.0.0

The Controller: Handler Subclasses and Objects

The controller for a Traits-based application is defined in terms of the Handler class.2 Specifically, the relationship
between any given View instance and the underlying model is managed by an instance of the Handler class. For
simple interfaces, the Handler can be implicit. For example, none of the examples in the first four chapters includes
or requires any specific Handler code; they are managed by a default Handler that performs the basic operations of
window initialization, transfer of data between GUI and model, and window closing. Thus, a programmer new to
TraitsUI need not be concerned with Handlers at all. Nonetheless, custom handlers can be a powerful tool for building
sophisticated application interfaces, as discussed in Controlling the Interface: the Handler.

1.2.2 Toolkit Selection

The TraitsUI package is designed to be toolkit-independent. Programs that use TraitsUI do not need to explicitly
import or call any particular GUI toolkit code unless they need some capability of the toolkit that is not provided by
TraitsUI. However, some particular toolkit must be installed on the system in order to actually display GUI windows.

TraitsUI uses a separate package, traits.etsconfig, to determine which GUI toolkit to use. This package is also used
by other Enthought packages that need GUI capabilities, so that all such packages “agree” on a single GUI toolkit
per application. The etsconfig package contains a singleton object, ETSConfig (importable from traits.etsconfig.api),
which has a string attribute, toolkit, that signifies the GUI toolkit.

The values of ETSConfig.toolkit that are supported by TraitsUI version 6.0 are:

• ‘qt4’: PyQt, which provides Python bindings for the Qt framework version 4.

• ‘wx’: wxPython, which provides Python bindings for the wxWidgets toolkit.

• ‘null’: A do-nothing toolkit, for situations where neither of the other toolkits is installed, but Traits is needed
for non-UI purposes.

The default behavior of TraitsUI is to search for available toolkit-specific packages in the order listed, and uses the
first one it finds. The programmer or the user can override this behavior in any of several ways, in the following order
of precedence:

1. The program can explicitly set ETSConfig.toolkit. It must do this before importing from any other Enthought
Tool Suite component, including traits. For example, at the beginning of a program:

from traits.etsconfig.api import ETSConfig
ETSConfig.toolkit = 'wx'

2. The user can define a value for the ETS_TOOLKIT environment variable.

Warning: The default order of toolkits changed in TraitsUI 5.0 to prefer ‘qt4’ over ‘wx’.

1.2.3 Structure of this Manual

The intent of this guide is to present the capabilities of the TraitsUI package in usable increments, so that you can
create and display gradually more sophisticated interfaces from one chapter to the next.

• The View and Its Building Blocks, Customizing a View, and Advanced View Concepts show how to construct and
display views from the simple to the elaborate, while leaving such details as GUI logic and widget selection to
system defaults.

2 Not to be confused with the TraitHandler class of the Traits package, which enforces type validation.

1.2. Introduction 3

http://riverbankcomputing.co.uk/pyqt/
http://trolltech.com/products/qt
http://www.wxpython.org
http://wxwidgets.org

TraitsUI 4 User Manual, Release 6.0.0

• Controlling the Interface: the Handler explains how to use the Handler class to implement custom GUI behav-
iors, as well as menus and toolbars.

• Introduction to Trait Editor Factories and The Predefined Trait Editor Factories show how to control GUI widget
selection by means of trait editors.

• Tips, Tricks and Gotchas covers miscellaneous additional topics.

• Further reference materials, including a Appendix I: Glossary of Terms and an API summary for the TraitsUI
classes covered in this Manual, are located in the Appendices.

1.3 The View and Its Building Blocks

A simple way to edit (or simply observe) the attribute values of a HasTraits object in a GUI window is to call the
object’s configure_traits()3 method. This method constructs and displays a window containing editable fields for each
of the object’s trait attributes. For example, the following sample code4 defines the SimpleEmployee class, creates an
object of that class, and constructs and displays a GUI for the object:

Example 1: Using configure_traits()

configure_traits.py -- Sample code to demonstrate
configure_traits()
from traits.api import HasTraits, Str, Int
import traitsui

class SimpleEmployee(HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

sam = SimpleEmployee()
sam.configure_traits()

Unfortunately, the resulting form simply displays the attributes of the object sam in alphabetical order with little
formatting, which is seldom what is wanted:

1.3.1 The View Object

In order to control the layout of the interface, it is necessary to define a View object. A View object is a template for
a GUI window or panel. In other words, a View specifies the content and appearance of a TraitsUI window or panel
display.

For example, suppose you want to construct a GUI window that shows only the first three attributes of a SimpleEm-
ployee (e.g., because salary is confidential and the employee number should not be edited). Furthermore, you would
like to specify the order in which those fields appear. You can do this by defining a View object and passing it to the
configure_traits() method:

3 If the code is being run from a program that already has a GUI defined, then use edit_traits() instead of configure_traits(). These methods are
discussed in more detail in Displaying a View.

4 All code examples in this guide that include a file name are also available as examples in the tutorials/doc_examples/examples
subdirectory of the Traits docs directory. You can run them individually, or view them in a tutorial program by running: python Traits_dir/
tutorials/tutor.py Traits_dir/docs/tutorials/doc_examples

4 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.1: Figure 1: User interface for Example 1

Example 2: Using configure_traits() with a View object

configure_traits_view.py -- Sample code to demonstrate
configure_traits()

from traits.api import HasTraits, Str, Int
from traitsui.api import View, Item
import traitsui

class SimpleEmployee(HasTraits):
first_name = Str
last_name = Str
department = Str
employee_number = Str
salary = Int

view1 = View(Item(name = 'first_name'),
Item(name = 'last_name'),
Item(name = 'department'))

sam = SimpleEmployee()
sam.configure_traits(view=view1)

The resulting window has the desired appearance:

Fig. 1.2: Figure 2: User interface for Example 2

A View object can have a variety of attributes, which are set in the View definition, following any Group or Item
objects.

The sections on Contents of a View through Advanced View Concepts explore the contents and capabilities of Views.
Refer to the Traits API Reference for details of the View class.

1.3. The View and Its Building Blocks 5

TraitsUI 4 User Manual, Release 6.0.0

Except as noted, all example code uses the configure_traits() method; a detailed description of this and other techniques
for creating GUI displays from Views can be found in Displaying a View.

1.3.2 Contents of a View

The contents of a View are specified primarily in terms of two basic building blocks: Item objects (which, as suggested
by Example 2, correspond roughly to individual trait attributes), and Group objects. A given View definition can
contain one or more objects of either of these types, which are specified as arguments to the View constructor, as in
the case of the three Items in Example 2.

The remainder of this chapter describes the Item and Group classes.

The Item Object

The simplest building block of a View is the Item object. An Item specifies a single interface widget, usually the display
for a single trait attribute of a HasTraits object. The content, appearance, and behavior of the widget are controlled by
means of the Item object’s attributes, which are usually specified as keyword arguments to the Item constructor, as in
the case of name in Example 2.

The remainder of this section describes the attributes of the Item object, grouped by categories of functionality. It
is not necessary to understand all of these attributes in order to create useful Items; many of them can usually be
left unspecified, as their default values are adequate for most purposes. Indeed, as demonstrated by earlier examples,
simply specifying the name of the trait attribute to be displayed is often enough to produce a usable result.

The following table lists the attributes of the Item class, organized by functional categories. Refer to the Traits API
Reference for details on the Item class.

Attributes of Item, by category

Content These attributes specify the actual data to be displayed by an item. Because an Item is essentially a template
for displaying a single trait, its name attribute is nearly always specified.

name: str The name of the trait being edited.

Display format In addition to specifying which trait attributes are to be displayed, you might need to adjust the format
of one or more of the resulting widgets.

If an Item’s label attribute is specified but not its name, the value of label is displayed as a simple, non-editable
string. (This feature can be useful for displaying comments or instructions in a TraitsUI window.)

dock: Docking style for the item.

emphasized: bool Should label text be emphasized?

export: Category of elements dragged from view.

height: Requested height as pixels (height > 1) or proportion of screen (0 < height < 1)

image: Image to show on tabs.

label: str The label to display on the item.

padding: int Amount of extra space, in pixels, to add around the item. Values must be integers between -15
and 15. Use negative values to subtract from the default spacing.

resizable: bool Can the item be resized to use extra space. The default is False.

show_label: bool Whether to show the label or not (defaults to True).

6 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

springy: bool Use extra space in the parent layout? The default is False.

width: float Requested width as pixels (width > 1) or proportion of screen (0 < width < 1).

Content format In some cases it can be desirable to apply special formatting to a widget’s contents rather than to the
widget itself. Examples of such formatting might include rounding a floating-point value to two decimal places,
or capitalizing all letter characters in a license plate number.

format_str: str ‘% format’ string for text.

format_func: func Format function for text.

Widget override These attributes override the widget that is automatically selected by TraitsUI. These options are
discussed in Introduction to Trait Editor Factories and The Predefined Trait Editor Factories.

editor: ItemEditor Editor to use.

style: {‘simple’, ‘custom’, ‘text’, ‘readonly’} The editor style (see Specifying an Editor Style).

Visibility and status Use these attributes to create a simple form of a dynamic GUI, which alters the display in
response to changes in the data it contains. More sophisticated dynamic behavior can be implemented using a
custom Handler (see Controlling the Interface: the Handler).

enabled_when: str Expression that determines whether of group can be edited.

visible_when: str Expression that determines visibility of group.

defined_when: str Expression that determines inclusion of group in parent.

has_focus: bool Should this item get initial focus?

User help These attributes provide guidance to the user in using the user interface.

tooltip: str Tooltip to display on mouse-over.

help: If the help attribute is not defined for an Item, a system-generated message is used instead.

help_id: It is ignored by the default help handler, but can be used by a custom help handler.

Unique identifier

id: Used as a key for saving user preferences about the widget. If id is not specified, the value of the name
attribute is used.

Subclasses of Item

The TraitsUI package defines the following subclasses of Item, which are helpful shorthands for defining certain types
of items. Label, Heading and Spring are intended to help with the layout of a TraitsUI View, and need not have a trait
attribute associated with them. For example, Spring() and Label("This is a label") are valid code.

1.3. The View and Its Building Blocks 7

TraitsUI 4 User Manual, Release 6.0.0

Sub-
class

Description Equivalent To

Label An item that is just a label and doesn’t require a
trait name associated with it

Head-
ing

A fancy label

Spring A item that expands to take as much space as nec-
essary

Item(name='spring', springy=True,
show_label=False)

Cus-
tom

An item with a custom editor style Item(style='custom')

Read-
only

An item with a readonly editor style Item(style='readonly')

UItem An item with no label Item(show_label=False)
UCus-
tom

A Custom item with no label Item(style='custom',
show_label=False)

URe-
adonly

A Readonly item with no label Item(style='readonly',
show_label=False)

The Group Object

The preceding sections have shown how to construct windows that display a simple vertical sequence of widgets using
instances of the View and Item classes. For more sophisticated interfaces, though, it is often desirable to treat a group
of data elements as a unit for reasons that might be visual (e.g., placing the widgets within a labeled border) or logical
(activating or deactivating the widgets in response to a single condition, defining group-level help text). In TraitsUI,
such grouping is accomplished by means of the Group object.

Consider the following enhancement to Example 2:

Example 3: Using configure_traits() with a View and a Group object

configure_traits_view_group.py -- Sample code to demonstrate
configure_traits()
from traits.api import HasTraits, Str, Int
from traitsui.api import View, Item, Group
import traitsui

class SimpleEmployee(HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

view1 = View(Group(Item(name = 'first_name'),
Item(name = 'last_name'),
Item(name = 'department'),
label = 'Personnel profile',
show_border = True))

sam = SimpleEmployee()
sam.configure_traits(view=view1)

8 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

The resulting window shows the same widgets as before, but they are now enclosed in a visible border with a text
label:

Fig. 1.3: Figure 3: User interface for Example 3

Content of a Group

The content of a Group object is specified exactly like that of a View object. In other words, one or more Item or Group
objects are given as arguments to the Group constructor, e.g., the three Items in Example 3.5 The objects contained in
a Group are called the elements of that Group. Groups can be nested to any level.

Group Attributes

The following table lists the attributes of the Group class, organized by functional categories. As with Item attributes,
many of these attributes can be left unspecified for any given Group, as the default values usually lead to acceptable
displays and behavior.

See the Traits API Reference for details of the Group class.

Attributes of Group, by category

Content

object: References the object whose traits are being edited by members of the group; by default this is ‘object’,
but could be another object in the current context.

content: list List of elements in the group.

Display format These attributes define display options for the group as a whole.

columns: The number of columns in the group.

dock: Dock style of sub-groups.

dock_theme: The theme to use for the dock.

export: Category of elements dragged from view.

image: Image to show on tabs.

label: The label to display on the group.

layout: {‘normal’, ‘flow’, ‘split’, ‘tabbed’} Layout style of the group, which can be one of the following:

• ‘normal’ (default): Sub-groups are displayed sequentially in a single panel.

5 As with Views, it is possible for a Group to contain objects of more than one type, but it is not recommended.

1.3. The View and Its Building Blocks 9

TraitsUI 4 User Manual, Release 6.0.0

• ‘flow’: Sub-groups are displayed sequentially, and then “wrap” when they exceed the available space
in the orientation direction.

• ‘split’: Sub-groups are displayed in a single panel, separated by “splitter bars”, which the user can
drag to adjust the amount of space for each sub-group.

• ‘tabbed’: Each sub-group appears on a separate tab, labeled with the sub-group’s label text, if any.

This attribute is ignored for groups that contain only items, or contain only one sub-group.

orientation: {‘vertical’, ‘horizontal’} The orientation of the subgroups.

padding: int Amount of extra space, in pixels, to add around the item. Values must be integers between -15
and 15. Use negative values to subtract from the default spacing.

selected: In a tabbed layout, should this be the visible tab?

show_border: bool Should a border be shown or not

show_labels: Show the labels of items?

show_left: bool Show labels on the left or the right.

springy: bool Use extra space in the parent layout? The default is False.

style: {‘simple’, ‘custom’, ‘text’, ‘readonly’} Default editor style of items in the group.

Visibility and status These attributes work similarly to the attributes of the same names on the Item class.

enabled_when: str Expression that determines whether of group can be edited.

visible_when: str Expression that determines visibility of group.

defined_when: str Expression that determines inclusion of group in parent.

User help The help text is used by the default help handler only if the group is the only top-level group for the current
View. For example, suppose help text is defined for a Group called group1. The following View shows this text
in its help window:

View(group1)

The following two do not:

View(group1, group2)
View(Group(group1))

help: str Help message. If the help attribute is not defined, a system-generated message is used instead.

help_id: The help_id attribute is ignored by the default help handler, but can be used by a custom help handler.

Unique identifier

id: str The id attribute is used as a key for saving user preferences about the widget. If id is not specified, the
id values of the elements of the group are concatenated and used as the group identifier.

Subclasses of Group

The TraitsUI package defines the following subclasses of Group, which are helpful shorthands for defining certain
types of groups. Refer to the Traits API Reference for details.

10 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Subclasses of Group

Sub-
class

Description Equivalent To

HGroup A group whose items are laid out horizontally. Group(orientation='horizontal')
HFlow A horizontal group whose items “wrap” when

they exceed the available horizontal space.
Group(orientation='horizontal',
layout='flow', show_labels=False)

HSplit A horizontal group with splitter bars to separate
it from other groups.

Group(orientation='horizontal',
layout='split')

Tabbed A group that is shown as a tab in a notebook. Group(orientation='horizontal'
layout='tabbed', springy=True)

VGroup A group whose items are laid out vertically. Group(orientation='vertical')
VFlow A vertical group whose items “wrap” when they

exceed the available vertical space.
Group(orientation='vertical',
layout='flow', show_labels=False)

VFold A vertical group in which items can be collapsed
(i.e., folded) by clicking their titles.

Group(orientation='vertical',
layout='fold', show_labels=False)

VGrid A vertical group whose items are laid out in two
columns.

Group(orientation='vertical',
columns=2)

VS-
plit

A vertical group with splitter bars to separate it
from other groups.

Group(orientation='vertical',
layout='split')

1.4 Customizing a View

As shown in the preceding two chapters, it is possible to specify a window in TraitsUI simply by creating a View object
with the appropriate contents. In designing real-life applications, however, you usually need to be able to control the
appearance and behavior of the windows themselves, not merely their content. This chapter covers a variety of options
for tailoring the appearance of a window that is created using a View, including the type of window that a View appears
in, the command buttons that appear in the window, and the physical properties of the window.

1.4.1 Specifying Window Type: the kind Attribute

Many types of windows can be used to display the same data content. A form can appear in a window, a wizard, or an
embedded panel; windows can be modal (i.e., stop all other program processing until the box is dismissed) or not, and
can interact with live data or with a buffered copy. In TraitsUI, a single View can be used to implement any of these
options simply by modifying its kind attribute. There are seven possible values of kind:

• ‘modal’

• ‘live’

• ‘livemodal’

• ‘nonmodal’

• ‘wizard’

• ‘panel’

• ‘subpanel’

These alternatives are described below. If the kind attribute of a View object is not specified, the default value is
‘modal’.

1.4. Customizing a View 11

TraitsUI 4 User Manual, Release 6.0.0

Stand-alone Windows

The behavior of a stand-alone TraitsUI window can vary over two significant degrees of freedom. First, it can be
modal, meaning that when the window appears, all other GUI interaction is suspended until the window is closed;
if it is not modal, then both the window and the rest of the GUI remain active and responsive. Second, it can be
live, meaning that any changes that the user makes to data in the window is applied directly and immediately to the
underlying model object or objects; otherwise the changes are made to a copy of the model data, and are only copied
to the model when the user commits them (usually by clicking an OK or Apply button; see Command Buttons: the
buttons Attribute). The four possible combinations of these behaviors correspond to four of the possible values of the
‘kind ‘ attribute of the View object, as shown in the following table.

Matrix of TraitsUI windows

not modal modal
not live nonmodal modal
live live livemodal

All of these window types are identical in appearance. Also, all types support the buttons attribute, which is described
in Command Buttons: the buttons Attribute. Usually, a window with command buttons is called a dialog box.

Wizards

Unlike a window, whose contents generally appear as a single page or a tabbed display, a wizard is presented as a
series of pages that a user must navigate sequentially.

TraitsUI Wizards are always modal and live. They always display a standard wizard button set; i.e., they ignore the
buttons View attribute. In short, wizards are considerably less flexible than windows, and are primarily suitable for
highly controlled user interactions such as software installation.

Panels and Subpanels

Both dialog boxes and wizards are secondary windows that appear separately from the main program display, if any.
Often, however, you might need to create a window element that is embedded in a larger display. For such cases, the
kind of the corresponding View object should be ‘panel’ or ‘subpanel ‘.

A panel is very similar to a window, except that it is embedded in a larger window, which need not be a TraitsUI
window. Like windows, panels support the buttons View attribute, as well as any menus and toolbars that are specified
for the View (see Menus and Menu Bars). Panels are always live and nonmodal.

A subpanel is almost identical to a panel. The only difference is that subpanels do not display command buttons even
if the View specifies them.

1.4.2 Command Buttons: the buttons Attribute

A common feature of many windows is a row of command buttons along the bottom of the frame. These buttons have
a fixed position outside any scrolled panels in the window, and are thus always visible while the window is displayed.
They are usually used for window-level commands such as committing or cancelling the changes made to the form
data, or displaying a help window.

12 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

In TraitsUI, these command buttons are specified by means of the View object’s buttons attribute, whose value is a
list of buttons to display.6 Consider the following variation on Example 3:

Example 4: Using a View object with buttons

configure_traits_view_buttons.py -- Sample code to demonstrate
configure_traits()

from traits.api import HasTraits, Str, Int
from traitsui.api import View, Item
from traitsui.menu import OKButton, CancelButton

class SimpleEmployee(HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

view1 = View(Item(name = 'first_name'),
Item(name = 'last_name'),
Item(name = 'department'),
buttons = [OKButton, CancelButton])

sam = SimpleEmployee()
sam.configure_traits(view=view1)

The resulting window has the same content as before, but now two buttons are displayed at the bottom: OK and
Cancel:

Fig. 1.4: Figure 4: User interface for Example 4

There are six standard buttons defined by TraitsUI. Each of the standard buttons has matching a string alias. You can
either import and use the button names, or simply use their aliases:

6 Actually, the value of the buttons attribute is really a list of Action objects, from which GUI buttons are generated by TraitsUI. The Action
class is described in Actions.

1.4. Customizing a View 13

TraitsUI 4 User Manual, Release 6.0.0

Command button aliases

Button Name Button Alias
UndoButton ‘Undo’
ApplyButton ‘Apply’
RevertButton ‘Revert’
OKButton ‘OK’ (case sensitive!)
CancelButton ‘Cancel’

Alternatively, there are several pre-defined button lists that can be imported from traitsui.menu and assigned to the
buttons attribute:

• OKCancelButtons = [OKButton, CancelButton]

• ModalButtons = [ApplyButton, RevertButton, OKButton, CancelButton, HelpButton
]

• LiveButtons = [UndoButton, RevertButton, OKButton, CancelButton, HelpButton]

Thus, one could rewrite the lines in Example 4 as follows, and the effect would be exactly the same:

from traitsui.menu import OKCancelButtons

buttons = OKCancelButtons

The special constant NoButtons can be used to create a window or panel without command buttons. While this is the
default behavior, NoButtons can be useful for overriding an explicit value for buttons. You can also specify buttons
= [] to achieve the same effect. Setting the buttons attribute to an empty list has the same effect as not defining it at
all.

It is also possible to define custom buttons and add them to the buttons list; see Custom Command Buttons for details.

1.4.3 Other View Attributes

Attributes of View, by category

Window display These attributes control the visual properties of the window itself, regardless of its content.

dock: {‘fixed’, ‘horizontal’, ‘vertical’, ‘tabbed’} The default docking style to use for sub-groups of the view.
The following values are possible:

• ‘fixed’: No rearrangement of sub-groups is allowed.

• ‘horizontal’: Moveable elements have a visual “handle” to the left by which the element can be
dragged.

• ‘vertical’: Moveable elements have a visual “handle” above them by which the element can be
dragged.

• ‘tabbed’: Moveable elements appear as tabbed pages, which can be arranged within the window or
“stacked” so that only one appears at at a time.

height: int or float Requested height for the view window, as an (integer) number of pixels, or as a (floating
point) fraction of the screen height.

icon: str The name of the icon to display in the dialog window title bar.

image: Image The image to display on notebook tabs.

14 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

resizable: bool Can the user resize the window?

scrollable: bool Can the user scroll the view? If set to True, window-level scroll bars appear whenever the
window is too small to show all of its contents at one time. If set to False, the window does not scroll, but
individual widgets might still contain scroll bars.

statusbar: Status bar items to add to the view’s status bar. The value can be:

• None: No status bar for the view (the default).

• string: Same as [StatusItem(name=string)].

• StatusItem: Same as [StatusItem].

• [[StatusItem|string], ...]: Create a status bar with one field for each StatusItem in the
list (or tuple). The status bar fields are defined from left to right in the order specified. A string value
is converted to: StatusItem(name=string):

style: The default editor style of elements in the view.

title: str Title for the view, displayed in the title bar when the view appears as a secondary window (i.e., dialog
or wizard). If not specified, “Edit properties” is used as the title.

width: int or float Requested width for the view window, as an (integer) number of pixels, or as a (floating
point) fraction of the screen width.

x, y: int or float The requested x and y coordinates for the window (positive for top/left, negative for bot-
tom/right, either pixels or proportions)

Command TraitsUI menus and toolbars are generally implemented in conjunction with custom Handlers; see Menus
and Menu Bars for details.

buttons: List of button actions to add to the view. The traitsui.menu module defines standard buttons, such
as OKButton, and standard sets of buttons, such as ModalButtons, which can be used to define a value
for this attribute. This value can also be a list of button name strings, such as ['OK', 'Cancel',
'Help']. If set to the empty list, the view contains a default set of buttons (equivalent to LiveButtons:
Undo/Redo, Revert, OK, Cancel, Help). To suppress buttons in the view, use the NoButtons variable,
defined in traitsui.menu.

close_result: What result should be returned if the user clicks the window or dialog close button or icon?

handler: The Handler object that provides GUI logic for handling events in the window. Set this attribute only
if you are using a custom Handler. If not set, the default Traits UI Handler is used.

key_bindings: The set of global key bindings for the view. Each time a key is pressed while the view has
keyboard focus, the key is checked to see if it is one of the keys recognized by the KeyBindings object.

menubar: The menu bar for the view. Usually requires a custom handler.

model_view: The factory function for converting a model into a model/view object.

on_apply: Called when modal changes are applied or reverted.

toolbar: The toolbar for the view. Usually requires a custom handler.

updated: Event Event when the view has been updated.

Content The imports and drop_class attributes control what objects can be dragged and dropped on the view.

content: The top-level Group object for the view.

drop_class: Class of dropped objects that can be added.

export: The category of exported elements.

imports: The valid categories of imported elements.

1.4. Customizing a View 15

TraitsUI 4 User Manual, Release 6.0.0

object: The default object being edited.

User help

help: (deprecated) The help attribute is a deprecated way to specify that the View has a Help button. Use the
buttons attribute instead (see Command Buttons: the buttons Attribute for details).

help_id: The help_id attribute is not used by Traits, but can be used by a custom help handler.

Unique

id: The id attribute is used as a key to save user preferences about a view, such as customized size and position,
so that they are restored the next time the view is opened. The value of id must be unique across all
Traits-based applications on a system. If no value is specified, no user preferences are saved for the view.

1.5 Advanced View Concepts

The preceding chapters of this Manual give an overview of how to use the View class to quickly construct a simple
window for a single HasTraits object. This chapter explores a number of more complex techniques that significantly
increase the power and versatility of the View object.

• Internal Views: Views can be defined as attributes of a HasTraits class; one class can have multiple views. View
attributes can be inherited by subclasses.

• External Views: A view can be defined as a module variable, inline as a function or method argument, or as an
attribute of a Handler.

• Ways of displaying Views: You can display a View by calling configure_traits() or edit_traits() on a HasTraits
object, or by calling the ui() method on the View object.

• View context: You can pass a context to any of the methods for displaying views, which is a dictionary of labels
and objects. In the default case, this dictionary contains only one object, referenced as ‘object’, but you can
define contexts that contain multiple objects.

• Include objects: You can use an Include object as a placeholder for view items defined elsewhere.

1.5.1 Internal Views

In the examples thus far, the View objects have been external. That is to say, they have been defined outside the model
(HasTraits object or objects) that they are used to display. This approach is in keeping with the separation of the two
concepts prescribed by the MVC design pattern.

There are cases in which it is useful to define a View within a HasTraits class. In particular, it can be useful to associate
one or more Views with a particular type of object so that they can be incorporated into other parts of the application
with little or no additional programming. Further, a View that is defined within a model class is inherited by any
subclasses of that class, a phenomenon called visual inheritance.

Defining a Default View

It is easy to define a default view for a HasTraits class: simply create a View attribute called traits_view for that class.
Consider the following variation on Example 3:

16 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Example 5: Using configure_traits() with a default View object

default_traits_view.py -- Sample code to demonstrate the use of
'traits_view'
from traits.api import HasTraits, Str, Int
from traitsui.api import View, Item, Group
import traitsui

class SimpleEmployee2(HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

traits_view = View(Group(Item(name = 'first_name'),
Item(name = 'last_name'),
Item(name = 'department'),
label = 'Personnel profile',
show_border = True))

sam = SimpleEmployee2()
sam.configure_traits()

In this example, configure_traits() no longer requires a view keyword argument; the traits_view attribute is used by
default, resulting in the same display as in Figure 3:

Fig. 1.5: Figure 5: User interface for Example 5

It is not strictly necessary to call this View attribute traits_view. If exactly one View attribute is defined for a HasTraits
class, that View is always treated as the default display template for the class. However, if there are multiple View
attributes for the class (as discussed in the next section), if one is named ‘traits_view’, it is always used as the default.

Sometimes, it is necessary to build a view based on the state of the object when it is being built. In such cases, defining
the view statically is limiting, so one can override the default_traits_view() method of a HasTraits object. The example
above would be implemented as follows:

Example 5b: Building a default View object with default_traits_view()

default_traits_view2.py -- Sample code to demonstrate the use of
'default_traits_view'
from traits.api import HasTraits, Str, Int
from traitsui.api import View, Item, Group
import traitsui

1.5. Advanced View Concepts 17

TraitsUI 4 User Manual, Release 6.0.0

class SimpleEmployee2(HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

def default_traits_view(self):
return View(Group(Item(name = 'first_name'),

Item(name = 'last_name'),
Item(name = 'department'),
label = 'Personnel profile',
show_border = True))

sam = SimpleEmployee2()
sam.configure_traits()

This pattern can be useful for situations where the layout of GUI elements depends on the state of the object. For
instance, to populate the values of a CheckListEditor() with items read in from a file, it would be useful to build the
default view this way.

Defining Multiple Views Within the Model

Sometimes it is useful to have more than one pre-defined view for a model class. In the case of the SimpleEmployee
class, one might want to have both a “public information” view like the one above and an “all information” view. One
can do this by simply adding a second View attribute:

Example 6: Defining multiple View objects in a HasTraits class

multiple_views.py -- Sample code to demonstrate the use of
multiple views
from traits.api import HasTraits, Str, Int
from traitsui.api import View, Item, Group
import traitsui

class SimpleEmployee3(HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

traits_view = View(Group(Item(name = 'first_name'),
Item(name = 'last_name'),
Item(name = 'department'),
label = 'Personnel profile',
show_border = True))

all_view = View(Group(Item(name = 'first_name'),
Item(name = 'last_name'),
Item(name = 'department'),
Item(name = 'employee_number'),

18 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Item(name = 'salary'),
label = 'Personnel database ' +

'entry',
show_border = True))

sam = SimpleEmployee3()
sam.configure_traits()
sam.configure_traits(view='all_view')

As before, a simple call to configure_traits() for an object of this class produces a window based on the default View
(traits_view). In order to use the alternate View, use the same syntax as for an external view, except that the View
name is specified in single quotes to indicate that it is associated with the object rather than being a module-level
variable:

configure_traits(view='all_view').

Note that if more than one View is defined for a model class, you must indicate which one is to be used as the default
by naming it traits_view. Otherwise, TraitsUI gives preference to none of them, and instead tries to construct
a default View, resulting in a simple alphabetized display as described in The View and Its Building Blocks. For this
reason, it is usually preferable to name a model’s default View traits_view even if there are no other Views; otherwise,
simply defining additional Views, even if they are never used, can unexpectedly change the behavior of the GUI.

1.5.2 Separating Model and View: External Views

In all the preceding examples in this guide, the concepts of model and view have remained closely coupled. In some
cases the view has been defined in the model class, as in Internal Views; in other cases the configure_traits() method
that produces a window from a View has been called from a HasTraits object. However, these strategies are simply
conveniences; they are not an intrinsic part of the relationship between model and view in TraitsUI. This section begins
to explore how the TraitsUI package truly supports the separation of model and view prescribed by the MVC design
pattern.

An external view is one that is defined outside the model classes. In Traits UI, you can define a named View wherever
you can define a variable or class attribute.7 A View can even be defined in-line as a function or method argument, for
example:

object.configure_traits(view=View(Group(Item(name='a'),
Item(name='b'),
Item(name='c')))

However, this approach is apt to obfuscate the code unless the View is very simple.

Example 2 through Example 4 demonstrate external Views defined as variables. One advantage of this convention is
that the variable name provides an easily accessible “handle” for re-using the View. This technique does not, however,
support visual inheritance.

A powerful alternative is to define a View within the controller (Handler) class that controls the window for that View.8

This technique is described in Controlling the Interface: the Handler.

1.5.3 Displaying a View

TraitsUI provides three methods for creating a window or panel from a View object. The first two, configure_traits()
and edit_traits(), are defined on the HasTraits class, which is a superclass of all Traits-based model classes, as well as

7 Note that although the definition of a View within a HasTraits class has the syntax of a trait attribute definition, the resulting View is not stored
as an attribute of the class.

8 Assuming there is one; not all GUIs require an explicitly defined Handler.

1.5. Advanced View Concepts 19

TraitsUI 4 User Manual, Release 6.0.0

of Handler and its subclasses. The third method, ui(), is defined on the View class itself.

configure_traits()

The configure_traits() method creates a standalone window for a given View object, i.e., it does not require an existing
GUI to run in. It is therefore suitable for building command-line functions, as well as providing an accessible tool for
the beginning TraitsUI programmer.

The configure_traits() method also provides options for saving trait attribute values to and restoring them from a file.
Refer to the Traits API Reference for details.

edit_traits()

The edit_traits() method is very similar to configure_traits(), with two major exceptions. First, it is designed to run
from within a larger application whose GUI is already defined. Second, it does not provide options for saving data to
and restoring data from a file, as it is assumed that these operations are handled elsewhere in the application.

ui()

The View object includes a method called ui(), which performs the actual generation of the window or panel from the
View for both edit_traits() and configure_traits(). The ui() method is also available directly through the TraitsUI API;
however, using one of the other two methods is usually preferable.9

The ui() method has five keyword parameters:

• kind

• context

• handler

• parent

• view_elements

The first four are identical in form and function to the corresponding arguments of edit_traits(), except that context is
not optional; the following section explains why.

The fifth argument, view_elements, is used only in the context of a call to ui() from a model object method, i.e.,
from configure_traits() or edit_traits(), Therefore it is irrelevant in the rare cases when ui() is used directly by client
code. It contains a dictionary of the named ViewElement objects defined for the object whose configure_traits() (or
edit_traits()) method was called..

1.5.4 The View Context

All three of the methods described in Displaying a View have a context parameter. This parameter can be a single
object or a dictionary of string/object pairs; the object or objects are the model objects whose traits attributes are to
be edited. In general a “context” is a Python dictionary whose keys are strings; the key strings are used to look up the
values. In the case of the context parameter to the ui() method, the dictionary values are objects. In the special case
where only one object is relevant, it can be passed directly instead of wrapping it in a dictionary.

When the ui() method is called from configure_traits() or edit_traits() on a HasTraits object, the relevant object is the
HasTraits object whose method was called. For this reason, you do not need to specify the context argument in most
calls to configure_traits() or edit_traits(). However, when you call the ui() method on a View object, you must specify

9 One possible exception is the case where a View object is defined as a variable (i.e., outside any class) or within a custom Handler, and is
associated more or less equally with multiple model objects; see Multi-Object Views.

20 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

the context parameter, so that the ui() method receives references to the objects whose trait attributes you want to
modify.

So, if configure_traits() figures out the relevant context for you, why call ui() at all? One answer lies in multi-object
Views.

Multi-Object Views

A multi-object view is any view whose contents depend on multiple “independent” model objects, i.e., objects that
are not attributes of one another. For example, suppose you are building a real estate listing application, and want to
display a window that shows two properties side by side for a comparison of price and features. This is straightforward
in TraitsUI, as the following example shows:

Example 7: Using a multi-object view with a context

multi_object_view.py -- Sample code to show multi-object view
with context

from traits.api import HasTraits, Str, Int, Bool
from traitsui.api import View, Group, Item

Sample class
class House(HasTraits):

address = Str
bedrooms = Int
pool = Bool
price = Int

View object designed to display two objects of class 'House'
comp_view = View(

Group(
Group(

Item('h1.address', resizable=True),
Item('h1.bedrooms'),
Item('h1.pool'),
Item('h1.price'),
show_border=True

),
Group(

Item('h2.address', resizable=True),
Item('h2.bedrooms'),
Item('h2.pool'),
Item('h2.price'),
show_border=True

),
orientation = 'horizontal'

),
title = 'House Comparison'

)
A pair of houses to demonstrate the View
house1 = House(address='4743 Dudley Lane',

bedrooms=3,
pool=False,
price=150000)

house2 = House(address='11604 Autumn Ridge',
bedrooms=3,

1.5. Advanced View Concepts 21

TraitsUI 4 User Manual, Release 6.0.0

pool=True,
price=200000)

...And the actual display command
house1.configure_traits(view=comp_view, context={'h1':house1,

'h2':house2})

The resulting window has the desired appearance:10

Fig. 1.6: Figure 6: User interface for Example 7

For the purposes of this particular example, it makes sense to create a separate Group for each model object, and to
use two model objects of the same class. Note, however, that neither is a requirement.

Notice that the Item definitions in Example 7 use the same type of extended trait attribute syntax as is supported for
the on_trait_change() dynamic trait change notification method. In fact, Item name attributes can reference any trait
attribute that is reachable from an object in the context. This is true regardless of whether the context contains a single
object or multiple objects. For example:

Item('object.axle.chassis.serial_number')

where “object” is the literal name which refers to the top-level object being viewed. (Note that “object” is not some
user-defined attribute name like “axle” in this example.) More precisely, “object” is the default name, in the view’s
context dictionary, of this top-level viewed object (see Advanced View Concepts).

Because an Item can refer only to a single trait, do not use extended trait references that refer to multiple traits, since
the behavior of such references is not defined. Also, avoid extended trait references where one of the intermediate
objects could be None, because there is no way to obtain a valid reference from None.

Refer to the Traits User Manual, in the chapter on trait notification, for details of the extended trait name syntax.

1.5.5 Include Objects

In addition to the Item and Group class, a third building block class for Views exists in TraitsUI: the Include class.
For the sake of completeness, this section gives a brief description of Include objects and their purpose and usage.
However, they are not commonly used as of this writing, and should be considered unsupported pending redesign.

In essence, an Include object is a placeholder for a named Group or Item object that is specified outside the Group or
View in which it appears. For example, the following two definitions, taken together, are equivalent to the third:

10 If the script were designed to run within an existing GUI, it would make sense to replace the last line with comp_view.
ui(context={'h1': house1, 'h2': house2}), since neither object particularly dominates the view. However, the examples in
this Manual are designed to be fully executable from the Python command line, which is why configure_traits() was used instead.

22 Chapter 1. TraitsUI 6.0 User Manual

http://github.enthought.com/traits/index.html

TraitsUI 4 User Manual, Release 6.0.0

Example 8: Using an Include object

This fragment...
my_view = View(Group(Item('a'),

Item('b')),
Include('my_group'))

...plus this fragment...
my_group = Group(Item('c'),

Item('d'),
Item('e'))

#...are equivalent to this:
my_view = View(Group(Item('a'),

Item('b')),
Group(Item('c'),

Item('d'),
Item('e'))

This opens an interesting possibility when a View is part of a model class: any Include objects belonging to that
View can be defined differently for different instances or subclasses of that class. This technique is called view
parameterization.

1.6 Controlling the Interface: the Handler

Most of the material in the preceding chapters is concerned with the relationship between the model and view aspects of
the MVC design pattern as supported by TraitsUI. This chapter examines the third aspect: the controller, implemented
in TraitsUI as an instance of the Handler class.11

A controller for an MVC-based application is essentially an event handler for GUI events, i.e., for events that are
generated through or by the program interface. Such events can require changes to one or more model objects (e.g.,
because a data value has been updated) or manipulation of the interface itself (e.g., window closure, dynamic interface
behavior). In TraitsUI, such actions are performed by a Handler object.

In the preceding examples in this guide, the Handler object has been implicit: TraitsUI provides a default Handler that
takes care of a common set of GUI events including window initialization and closure, data value updates, and button
press events for the standard TraitsUI window buttons (see Command Buttons: the buttons Attribute).

This chapter explains the features of the TraitsUI Handler, and shows how to implement custom GUI behaviors by
building and instantiating custom subclasses of the Handler class. The final section of the chapter describes several
techniques for linking a custom Handler to the window or windows it is designed to control.

1.6.1 Backstage: Introducing the UIInfo Object

TraitsUI supports the MVC design pattern by maintaining the model, view, and controller as separate entities. A single
View object can be used to construct windows for multiple model objects; likewise a single Handler can handle GUI
events for windows created using different Views. Thus there is no static link between a Handler and any particular
window or model object. However, in order to be useful, a Handler must be able to observe and manipulate both its
corresponding window and model objects. In TraitsUI, this is accomplished by means of the UIInfo object.

Whenever TraitsUI creates a window or panel from a View, a UIInfo object is created to act as the Handler’s reference
to that window and to the objects whose trait attributes are displayed in it. Each entry in the View’s context (see The

11 Except those implemented via the enabled_when, visible_when, and defined_when attributes of Items and Groups.

1.6. Controlling the Interface: the Handler 23

TraitsUI 4 User Manual, Release 6.0.0

View Context) becomes an attribute of the UIInfo object.12 For example, the UIInfo object created in Example 7 has
attributes h1 and h2 whose values are the objects house1 and house2 respectively. In Example 1 through Example 6,
the created UIInfo object has an attribute object whose value is the object sam.

Whenever a window event causes a Handler method to be called, TraitsUI passes the corresponding UIInfo object as
one of the method arguments. This gives the Handler the information necessary to perform its tasks.

1.6.2 Assigning Handlers to Views

In accordance with the MVC design pattern, Handlers and Views are separate entities belonging to distinct classes. In
order for a custom Handler to provide the control logic for a window, it must be explicitly associated with the View
for that window. The TraitsUI package provides three ways to accomplish this:

• Make the Handler an attribute of the View.

• Provide the Handler as an argument to a display method such as edit_traits().

• Define the View as part of the Handler.

Binding a Singleton Handler to a View

To associate a given custom Handler with all windows produced from a given View, assign an instance of the custom
Handler class to the View’s handler attribute. The result of this technique, as shown in Example 9, is that the window
created by the View object is automatically controlled by the specified handler instance.

Linking Handler and View at Edit Time

It is also possible to associate a custom Handler with a specific window without assigning it permanently to the View.
Each of the three TraitsUI window-building methods (the configure_traits() and edit_traits() methods of the HasTraits
class and the ui() method of the View class) has a handler keyword argument. Assigning an instance of Handler to
this argument gives that handler instance control only of the specific window being created by the method call. This
assignment overrides the View’s handler attribute.

Creating a Default View Within a Handler

You seldom need to associate a single custom Handler with several different Views or vice versa, although you can in
theory and there are cases where it is useful to be able to do so. In most real-life scenarios, a custom Handler is tailored
to a particular View with which it is always used. One way to reflect this usage in the program design is to define the
View as part of the Handler. The same rules apply as for defining Views within HasTraits objects; for example, a view
named ‘trait_view’ is used as the default view.

The Handler class, which is a subclass of HasTraits, overrides the standard configure_traits() and edit_traits() methods;
the subclass versions are identical to the originals except that the Handler object on which they are called becomes the
default Handler for the resulting windows. Note that for these versions of the display methods, the context keyword
parameter is not optional.

1.6.3 Handler Subclasses

TraitsUI provides two Handler subclasses: ModelView and Controller. Both of these classes are designed to simplify
the process of creating an MVC-based application.

12 Other attributes of the UIInfo object include a UI object and any trait editors contained in the window (see Introduction to Trait Editor
Factories and The Predefined Trait Editor Factories).

24 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Both ModelView and Controller extend the Handler class by adding the following trait attributes:

• model: The model object for which this handler defines a view and controller.

• info: The UIInfo object associated with the actual user interface window or panel for the model object.

The model attribute provides convenient access to the model object associated with either subclass. Normally, the
model attribute is set in the constructor when an instance of ModelView or Controller is created.

The info attribute provides convenient access to the UIInfo object associated with the active user interface view for the
handler object. The info attribute is automatically set when the handler object’s view is created.

Both classes’ constructors accept an optional model parameter, which is the model object. They also can accept
metadata as keyword parameters.

class ModelView([model = None, **metadata])
class Controller([model = None, **metadata])
The difference between the ModelView and Controller classes lies in the context dictionary that each one passes to its
associated user interface, as described in the following sections.

Controller Class

The Controller class is normally used when implementing a standard MVC-based design, and plays the “controller”
role in the MVC design pattern. The “model” role is played by the object referenced by the Controller’s model
attribute; and the “view” role is played by the View object associated with the model object.

The context dictionary that a Controller object passes to the View’s ui() method contains the following entries:

• object: The Controller’s model object.

• controller: The Controller object itself.

Using a Controller as the handler class assumes that the model object contains most, if not all, of the data to be
viewed. Therefore, the model object is used for the object key in the context dictionary, so that its attributes can be
easily referenced with unqualified names (such as Item(‘name’)).

ModelView Class

The ModelView class is useful when creating a variant of the standard MVC design pattern. In this variant, the
ModelView subclass reformulates a number of trait attributes on its model object as properties on the ModelView,
usually to convert the model’s data into a format that is more suited to a user interface.

The context dictionary that a ModelView object passes to the View’s ui() method contains the following entries:

• object: The ModelView object itself.

• model: The ModelView’s model object.

In effect, the ModelView object substitutes itself for the model object in relation to the View object, serving both
the “controller” role and the “model” role (as a set of properties wrapped around the original model). Because the
ModelView object is passed as the context’s object, its attributes can be referenced by unqualified names in the View
definition.

1.6.4 Writing Handler Methods

If you create a custom Handler subclass, depending on the behavior you want to implement, you might override the
standard methods of Handler, or you might create methods that respond to changes to specific trait attributes.

1.6. Controlling the Interface: the Handler 25

TraitsUI 4 User Manual, Release 6.0.0

Overriding Standard Methods

The Handler class provides methods that are automatically executed at certain points in the lifespan of the window
controlled by a given Handler. By overriding these methods, you can implement a variety of custom window behaviors.
The following sequence shows the points at which the Handler methods are called.

1. A UIInfo object is created

2. The Handler’s init_info() method is called. Override this method if the handler needs access to viewable traits
on the UIInfo object whose values are properties that depend on items in the context being edited.

3. The UI object is created, and generates the actual window.

4. The init() method is called. Override this method if you need to initialize or customize the window.

5. The position() method is called. Override this method to modify the position of the window (if setting the x and
y attributes of the View is insufficient).

6. The window is displayed.

When Handler methods are called, and when to override them

Method Called When Override When?
apply(info) The user clicks the Apply button, and af-

ter the changes have been applied to the
context objects.

To perform additional processing at this point.

close(info,
is_ok)

The user requests to close the window,
clicking OK, Cancel, or the window close
button, menu, or icon.

To perform additional checks before destroying the
window.

closed(info,
is_ok)

The window has been destroyed. To perform additional clean-up tasks.

revert(info) The user clicks the Revert button, or clicks
Cancel in a live window.

To perform additional processing.

setattr(info,
object,
name, value)

The user changes a trait attribute value
through the user interface.

To perform additional processing, such as keeping a
change history. Make sure that the overriding method
actually sets the attribute.

show_help(info,
con-
trol=None)

The user clicks the Help button. To call a custom help handler in addition to or instead
of the global help handler, for this window.

per-
form(info,
action,
event)

The user clicks a button or toolbar item,
or selects a menu item.

To change the way that actions are handled, eg. to
pass more info to a method.

Reacting to Trait Changes

The setattr() method described above is called whenever any trait value is changed in the UI. However, TraitsUI also
provides a mechanism for calling methods that are automatically executed whenever the user edits a particular trait.
While you can use static notification handler methods on the HasTraits object, you might want to implement behavior
that concerns only the user interface. In that case, following the MVC pattern dictates that such behavior should
not be implemented in the “model” part of the code. In keeping with this pattern, TraitsUI supports “user interface
notification” methods, which must have a signature with the following format:

extended_traitname_changed(info)

26 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

This method is called whenever a change is made to the attribute specified by extended_traitname in the context of
the View used to create the window (see Multi-Object Views), where the dots in the extended trait reference have been
replaced by underscores. For example, for a method to handle changes on the salary attribute of the object whose
context key is ‘object’ (the default object), the method name should be object_salary_changed().

By contrast, a subclass of Handler for Example 7 might include a method called h2_price_changed() to be called
whenever the price of the second house is edited.

Note: These methods are called on window creation.

User interface notification methods are called when the window is first created.

To differentiate between code that should be executed when the window is first initialized and code that should be
executed when the trait actually changes, use the initialized attribute of the UIInfo object (i.e., of the info argument):

def object_foo_changed(self, info):

if not info.initialized:
#code to be executed only when the window is
#created

else:
#code to be executed only when 'foo' changes after
#window initialization}

#code to be executed in either case

The following script, which annotates its window’s title with an asterisk (‘*’) the first time a data element is updated,
demonstrates a simple use of both an overridden setattr() method and user interface notification method.

Example 9: Using a Handler that reacts to trait changes

handler_override.py -- Example of a Handler that overrides
setattr(), and that has a user interface
notification method

from traits.api import HasTraits, Bool
from traitsui.api import View, Handler

class TC_Handler(Handler):

def setattr(self, info, object, name, value):
Handler.setattr(self, info, object, name, value)
info.object._updated = True

def object__updated_changed(self, info):
if info.initialized:

info.ui.title += "*"

class TestClass(HasTraits):
b1 = Bool
b2 = Bool
b3 = Bool
_updated = Bool(False)

view1 = View('b1', 'b2', 'b3',
title="Alter Title",

1.6. Controlling the Interface: the Handler 27

TraitsUI 4 User Manual, Release 6.0.0

handler=TC_Handler(),
buttons = ['OK', 'Cancel'])

tc = TestClass()
tc.configure_traits(view=view1)

Fig. 1.7: Figure 7: Before and after views of Example 9

Implementing Custom Window Commands

Another use of a Handler is to define custom window actions, which can be presented as buttons, menu items, or
toolbar buttons.

Actions

In TraitsUI, window commands are implemented as instances of the Action class. Actions can be used in command
buttons, menus, and toolbars.

Suppose you want to build a window with a custom Recalculate action. Suppose further that you have defined a
subclass of Handler called MyHandler to provide the logic for the window. To create the action:

1. Add a method to MyHandler that implements the command logic. This method can have any name (e.g.,
do_recalc()), but must accept exactly one argument: a UIInfo object.

2. Create an Action instance using the name of the new method, e.g.:

recalc = Action(name = "Recalculate",
action = "do_recalc")

28 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Custom Command Buttons

The simplest way to turn an Action into a window command is to add it to the buttons attribute for the View. It appears
in the button area of the window, along with any standard buttons you specify.

1. Define the handler method and action, as described in Actions.

2. Include the new Action in the buttons attribute for the View:

View (#view contents,
...,
buttons = [OKButton, CancelButton, recalc])

Menus and Menu Bars

Another way to install an Action such as recalc as a window command is to make it into a menu option.

1. Define the handler method and action, as described in Actions.

2. If the View does not already include a MenuBar, create one and assign it to the View’s menubar attribute.

3. If the appropriate Menu does not yet exist, create it and add it to the MenuBar.

4. Add the Action to the Menu.

These steps can be executed all at once when the View is created, as in the following code:

View (#view contents,
...,
menubar = MenuBar(

Menu(my_action,
name = 'My Special Menu')))

Toolbars

A third way to add an action to a Traits View is to make it a button on a toolbar. Adding a toolbar to a Traits View is
similar to adding a menu bar, except that toolbars do not contain menus; they directly contain actions.

1. Define the handler method and the action, as in Actions, including a tooltip and an image to display on the
toolbar. The image must be a Pyface ImageResource instance; if a path to the image file is not specified, it is
assumed to be in an images subdirectory of the directory where ImageResource is used:

From pyface.api import ImageResource

recalc = Action(name = "Recalculate",
action = "do_recalc",
toolip = "Recalculate the results",
image = ImageResource("recalc.png"))

2. If the View does not already include a ToolBar, create one and assign it to the View’s toolbar attribute.

3. Add the Action to the ToolBar.

As with a MenuBar, these steps can be executed all at once when the View is created, as in the following code:

View (#view contents,
...,
toolbar = ToolBar(my_action))

1.6. Controlling the Interface: the Handler 29

TraitsUI 4 User Manual, Release 6.0.0

1.7 Introduction to Trait Editor Factories

The preceding code samples in this User Manual have been surprisingly simple considering the sophistication of the
interfaces that they produce. In particular, no code at all has been required to produce appropriate widgets for the
Traits to be viewed or edited in a given window. This is one of the strengths of TraitsUI: usable interfaces can be
produced simply and with a relatively low level of UI programming expertise.

An even greater strength lies in the fact that this simplicity does not have to be paid for in lack of flexibility. Where
a novice TraitsUI programmer can ignore the question of widgets altogether, a more advanced one can select from
a variety of predefined interface components for displaying any given Trait. Furthermore, a programmer who is
comfortable both with TraitsUI and with UI programming in general can harness the full power and flexibility of the
underlying GUI toolkit from within TraitsUI.

The secret behind this combination of simplicity and flexibility is a TraitsUI construct called a trait editor factory. A
trait editor factory encapsulates a set of display instructions for a given trait type, hiding GUI-toolkit-specific code
inside an abstraction with a relatively straightforward interface. Furthermore, every predefined trait type in the Traits
package has a predefined trait editor factory that is automatically used whenever the trait is displayed, unless you
specify otherwise.

Consider the following script and the window it creates:

Example 12: Using default trait editors

default_trait_editors.py -- Example of using default
trait editors

from traits.api import HasTraits, Str, Range, Bool
from traitsui.api import View, Item

class Adult(HasTraits):
first_name = Str
last_name = Str
age = Range(21,99)
registered_voter = Bool

traits_view = View(Item(name='first_name'),
Item(name='last_name'),
Item(name='age'),
Item(name='registered_voter'))

alice = Adult(first_name='Alice',
last_name='Smith',
age=42,
registered_voter=True)

alice.configure_traits()

Notice that each trait is displayed in an appropriate widget, even though the code does not explicitly specify any
widgets at all. The two Str traits appear in text boxes, the Range is displayed using a combination of a text box and a
slider, and the Bool is represented by a checkbox. Each implementation is generated by the default trait editor factory
(TextEditor, RangeEditor and BooleanEditor respectively) associated with the trait type.

TraitsUI is by no means limited to these defaults. There are two ways to override the default representation of a trait
attribute in a TraitsUI window:

• Explicitly specifying an alternate trait editor factory

30 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.8: Figure 12: User interface for Example 12

• Specifying an alternate style for the editor generated by the factory

The remainder of this chapter examines these alternatives more closely.

1.7.1 Specifying an Alternate Trait Editor Factory

As of this writing the TraitsUI package includes a wide variety of predefined trait editor factories, which are de-
scribed in Basic Trait Editor Factories and Advanced Trait Editors. Some additional editor factories are specific to the
wxWidgets toolkit and are defined in one of the following packages:

• traitsui.wx

• traitsui.wx.extra

• traitsui.wx.extra.windows (specific to Microsoft Windows)

These editor factories are described in “Extra” Trait Editor Factories.

For a current complete list of editor factories, refer to the Traits API Reference.

Other packages can define their own editor factories for their own traits. For example, enthought.kiva.api.KivaFont
uses a KivaFontEditor() and enthought.enable2.traits.api.RGBAColor uses an RGBAColorEditor().

For most predefined trait types (see Traits User Manual), there is exactly one predefined trait editor factory suitable for
displaying it: the editor factory that is assigned as its default.15 There are exceptions, however; for example, a Str trait
defaults to using a TextEditor, but can also use a CodeEditor or an HTMLEditor. A List trait can be edited by means
of ListEditor, TableEditor (if the List elements are HasTraits objects), CheckListEditor or SetEditor. Furthermore, the
TraitsUI package includes tools for building additional trait editors and factories for them as needed.

To use an alternate editor factory for a trait in a TraitsUI window, you must specify it in the View for that window.
This is done at the Item level, using the editor keyword parameter. The syntax of the specification is editor =
editor_factory(). (Use the same syntax for specifying that the default editor should be used, but with certain
keyword parameters explicitly specified; see Initializing Editors).

For example, to display a Str trait called my_string using the default editor factory (TextEditor()), the View might
contain the following Item:

Item(name='my_string')

The resulting widget would have the following appearance:

Fig. 1.9: Figure 13: Default editor for a Str trait

15 Appendix II contains a table of the predefined trait types in the Traits package and their default trait editor types.

1.7. Introduction to Trait Editor Factories 31

http://github.enthought.com/traits/index.html

TraitsUI 4 User Manual, Release 6.0.0

To use the HTMLEditor factory instead, add the appropriate specification to the Item:

Item(name='my_string', editor=HTMLEditor())

The resulting widget appears as in Figure 14:

Fig. 1.10: Figure 14: Editor generated by HTMLEditor()

Note: TraitsUI does not check editors for appropriateness.

TraitsUI does not police the editor argument to ensure that the specified editor is appropriate for the trait being dis-
played. Thus there is nothing to prevent you from trying to, say, display a Float trait using ColorEditor(). The results
of such a mismatch are unlikely to be helpful, and can even crash the application; it is up to the programmer to choose
an editor sensibly. The Predefined Trait Editor Factories is a useful reference for selecting an appropriate editor for a
given task.

It is possible to specify the trait editor for a trait in other ways:

• You can specify a trait editor when you define a trait, by passing the result of a trait editor factory as the editor
keyword parameter of the callable that creates the trait. However, this approach commingles the view of a trait
with its model.

• You can specify the editor attribute of a TraitHandler object. This approach commingles the view of a trait with
its controller.

Use these approaches very carefully, if at all, as they muddle the MVC design pattern.

Initializing Editors

Many of the TraitsUI trait editors can be used “straight from the box” as in the example above. There are some editors,
however, that must be initialized in order to be useful. For example, a checklist editor (from CheckListEditor()) and a
set editor (from SetEditor()) both enable the user to edit a List attribute by selecting elements from a specified set; the
contents of this set must, of course, be known to the editor. This sort of initialization is usually performed by means
of one or more keyword arguments to the editor factory, for example:

Item(name='my_list',editor=CheckListEditor(values=["opt1","opt2","opt3"]))

The descriptions of trait editor factories in The Predefined Trait Editor Factories include a list of required and optional
initialization keywords for each editor.

1.7.2 Specifying an Editor Style

In TraitsUI, any given trait editor can be generated in one or more of four different styles: simple, custom, text or
readonly. These styles, which are described in general terms below, represent different “flavors” of data display, so
that a given trait editor can look completely different in one style than in another. However, different trait editors
displayed in the same style (usually) have noticeable characteristics in common. This is useful because editor style,
unlike individual editors, can be set at the Group or View level, not just at the Item level. This point is discussed
further in Using Editor Styles.

32 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

The ‘simple’ Style

The simple editor style is designed to be as functional as possible while requiring minimal space within the window.
In simple style, most of the Traits UI editors take up only a single line of space in the window in which they are
embedded.

In some cases, such as the text editor and Boolean editor (see Basic Trait Editor Factories), the single line is fully
sufficient. In others, such as the (plain) color editor and the enumeration editor, a more detailed interface is required;
pop-up panels, drop-down lists, or dialog boxes are often used in such cases. For example, the simple version of the
enumeration editor for the wxWidgets toolkit looks like this:

Fig. 1.11: Figure 15: Simple style of enumeration editor

However, when the user clicks on the widget, a drop-down list appears:

Fig. 1.12: Figure 16: Simple enumeration editor with expanded list

The simple editor style is most suitable for windows that must be kept small and concise.

The ‘custom’ Style

The custom editor style generally generates the most detailed version of any given editor. It is intended to provide
maximal functionality and information without regard to the amount of window space used. For example, in the
wxWindows toolkit, the custom style the enumeration editor appears as a set of radio buttons rather than a drop-down
list:

Fig. 1.13: Figure 17: Custom style of enumeration editor

In general, the custom editor style can be very useful when there is no need to conserve window space, as it enables
the user to see as much information as possible without having to interact with the widget. It also usually provides the
most intuitive interface of the four.

Note that this style is not defined explicitly for all trait editor implementations. If the custom style is requested for an
editor for which it is not defined, the simple style is generated instead.

1.7. Introduction to Trait Editor Factories 33

TraitsUI 4 User Manual, Release 6.0.0

The ‘text’ Style

The text editor style is the simplest of the editor styles. When applied to a given trait attribute, it generates a text
representation of the trait value in an editable box. Thus the enumeration editor in text style looks like the following:

Fig. 1.14: Figure 18: Text style of enumeration editor

For this type of editor, the end user must type in a valid value for the attribute. If the user types an invalid value, the
validation method for the attribute (see Traits User Manual) notifies the user of the error (for example, by shading the
background of the text box red).

The text representation of an attribute to be edited in a text style editor is created in one of the following ways, listed
in order of priority:

1. The function specified in the format_func attribute of the Item (see The Item Object), if any, is called on the
attribute value.

2. Otherwise, the function specified in the format_func parameter of the trait editor factory, if any, is called on the
attribute value.

3. Otherwise, the Python-style formatting string specified in the format_str attribute of the Item (see The Item
Object), if any, is used to format the attribute value.

4. The Python-style formatting string specified in the format_str parameter of the trait editor factory, if any, is used
to format the attribute value.

5. Otherwise, the Python str() function is called on the attribute value.

The ‘readonly’ style

The readonly editor style is usually identical in appearance to the text style, except that the value appears as static text
rather than in an editable box:

Fig. 1.15: Figure 19: Read-only style of enumeration editor

This editor style is used to display data values without allowing the user to change them.

Using Editor Styles

As discussed in Contents of a View and Customizing a View, the Item, Group and View objects of TraitsUI all have a
style attribute. The style of editor used to display the Items in a View is determined as follows:

1. The editor style used to display a given Item is the value of its style attribute if specifically assigned. Otherwise
the editor style of the Group or View that contains the Item is used.

2. The editor style of a Group is the value of its style attribute if assigned. Otherwise, it is the editor style of the
Group or View that contains the Group.

3. The editor style of a View is the value of its style attribute if specified, and ‘simple’ otherwise.

34 Chapter 1. TraitsUI 6.0 User Manual

http://github.enthought.com/traits/index.html

TraitsUI 4 User Manual, Release 6.0.0

In other words, editor style can be specified at the Item, Group or View level, and in case of conflicts the style of the
smaller scope takes precedence. For example, consider the following script:

Example 13: Using editor styles at various levels

mixed_styles.py -- Example of using editor styles at
various levels

from traits.api import HasTraits, Str, Enum
from traitsui.api import View, Group, Item

class MixedStyles(HasTraits):
first_name = Str
last_name = Str

department = Enum("Business", "Research", "Admin")
position_type = Enum("Full-Time",

"Part-Time",
"Contract")

traits_view = View(Group(Item(name='first_name'),
Item(name='last_name'),
Group(Item(name='department'),

Item(name='position_type',
style='custom'),

style='simple')),
title='Mixed Styles',
style='readonly')

ms = MixedStyles(first_name='Sam', last_name='Smith')
ms.configure_traits()

Notice how the editor styles are set for each attribute:

• position_type at the Item level (lines 19-20)

• department at the Group level (lines 18 and 21)

• first_name and last_name at the View level (lines 16, 17, and 23)

The resulting window demonstrates these precedence rules:

Fig. 1.16: Figure 20: User interface for Example 13

1.7. Introduction to Trait Editor Factories 35

TraitsUI 4 User Manual, Release 6.0.0

1.8 The Predefined Trait Editor Factories

This chapter contains individual descriptions of the predefined trait editor factories provided by TraitsUI. Most of these
editor factories are straightforward and can be used easily with little or no expertise on the part of the programmer or
end user; these are described in Basic Trait Editor Factories. The section Advanced Trait Editors covers a smaller set
of specialized editors that have more complex interfaces or that are designed to be used along with complex editors.

Note: Examples are toolkit-specific.

The exact appearance of the editors depends on the underlying GUI toolkit. The screenshots and descriptions in this
chapter are based on wxWindows. Another supported GUI toolkit is Qt, from TrollTech.

Rather than trying to memorize all the information in this chapter, you might skim it to get a general idea of the
available trait editors and their capabilities, and use it as a reference thereafter.

1.8.1 Basic Trait Editor Factories

The editor factories described in the following sections are straightforward to use. You can pass the editor object
returned by the editor factory as the value of the editor keyword parameter when defining a trait.

ArrayEditor()

Suitable for 2-D Array, 2-D CArray

Default for Array, CArray (if 2-D)

Optional parameter width

The editors generated by ArrayEditor() provide text fields (or static text for the read-only style) for each cell of a two-
dimensional Numeric array. Only the simple and read-only styles are supported by the wxWidgets implementation.
You can specify the width of the text fields with the width parameter.

The following code generates the editors shown in Figure 21.

Example 14: Demonstration of array editors

array_editor.py -- Example of using array editors

import numpy as np
from traits.api import HasPrivateTraits, Array
from traitsui.api \

import View, ArrayEditor, Item
from traitsui.menu import NoButtons

class ArrayEditorTest (HasPrivateTraits):

three = Array(np.int, (3,3))
four = Array(np.float,

(4,4),
editor = ArrayEditor(width = -50))

view = View(Item('three', label='3x3 Integer'),
'_',

36 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.17: Figure 21: Array editors

1.8. The Predefined Trait Editor Factories 37

TraitsUI 4 User Manual, Release 6.0.0

Item('three',
label='Integer Read-only',
style='readonly'),

'_',
Item('four', label='4x4 Float'),
'_',
Item('four',

label='Float Read-only',
style='readonly'),

buttons = NoButtons,
resizable = True)

if __name__ == '__main__':
ArrayEditorTest().configure_traits()

BooleanEditor()

Suitable for Bool, CBool

Default for Bool, CBool

Optional parameters mapping

BooleanEditor is one of the simplest of the built-in editor factories in the TraitsUI package. It is used exclusively to
edit and display Boolean (i.e, True/False) traits. In the simple and custom styles, it generates a checkbox. In the text
style, the editor displays the trait value (as one would expect) as the strings True or False. However, several variations
are accepted as input:

• 'True'

• T

• Yes

• y

• 'False'

• F

• No

• n

The set of acceptable text inputs can be changed by setting the BooleanEditor() parameter mapping to a dictionary
whose entries are of the form str: val, where val is either True or False and str is a string that is acceptable as text
input in place of that value. For example, to create a Boolean editor that accepts only yes and no as appropriate text
values, you might use the following expression:

editor=BooleanEditor(mapping={"yes":True, "no":False})

Note that in this case, the strings True and False would not be acceptable as text input.

Figure 22 shows the four styles generated by BooleanEditor().

ButtonEditor()

Suitable for Button, Event, ToolbarButton

38 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.18: Figure 22: Boolean editor styles

Default for Button, ToolbarButton

Optional parameters height_padding, image, label, label_value, orientation, style, value, values_trait,
view, width_padding

The ButtonEditor() factory is designed to be used with an Event or Button16 trait. When a user clicks a button editor,
the associated event is fired. Because events are not printable objects, the text and read-only styles are not implemented
for this editor. The simple and custom styles of this editor are identical.

Fig. 1.19: Figure 23: Button editor styles

By default, the label of the button is the name of the Button or Event trait to which it is linked.17 However, this label
can be set to any string by specifying the label parameter of ButtonEditor() as that string.

Alternatively, use label_value to specify the name of the trait to use as the button label.

You can specify a value for the trait to be set to, using the value parameter. If the trait is an Event, then the value is not
stored, but might be useful to an event listener.

Use values_trait to specify the name of the trait on the object that contains the list of possible values. If this is set, then
the value, label, and label_value traits are ignored; instead, they will be set from this list. When this button is clicked,
the value set will be the one selected from the drop-down.

CheckListEditor()

Suitable for List

Default for (none)

Optional parameters cols, name, values

16 In Traits, a Button and an Event are essentially the same thing, except that Buttons are automatically associated with button editors.
17 TraitsUI makes minor modifications to the name, capitalizing the first letter and replacing underscores with spaces, as in the case of a default

Item label (see The View Object).

1.8. The Predefined Trait Editor Factories 39

TraitsUI 4 User Manual, Release 6.0.0

The editors generated by the CheckListEditor() factory are designed to enable the user to edit a List trait by selecting
elements from a “master list”, i.e., a list of possible values. The list of values can be supplied by the trait being edited,
or by the values parameter.

The values parameter can take either of two forms:

• A list of strings

• A list of tuples of the form (element, label), where element can be of any type and label is a string.

In the latter case, the user selects from the labels, but the underlying trait is a List of the corresponding element values.

Alternatively, you can use the name parameter to specify a trait attribute containing the label strings for the values.

The custom style of editor from this factory is displayed as a set of checkboxes. By default, these checkboxes are
displayed in a single column; however, you can initialize the cols parameter of the editor factory to any value between
1 and 20, in which case the corresponding number of columns is used.

The simple style generated by CheckListEditor() appears as a drop-down list; in this style, only one list element can
be selected, so it returns a list with a single item. The text and read-only styles represent the current contents of
the attribute in Python-style text format; in these cases the user cannot see the master list values that have not been
selected.

The four styles generated by CheckListEditor() are shown in Figure 24. Note that in this case the cols parameter has
been set to 4.

Fig. 1.20: Figure 24: Checklist editor styles

CodeEditor()

Suitable for Code, Str, String

Default for Code

Optional parameters auto_set

The purpose of a code editor is to display and edit Code traits, though it can be used with the Str and String trait
types as well. In the simple and custom styles (which are identical for this editor), the text is displayed in numbered,
non-wrapping lines with a horizontal scrollbar. The text style displays the trait value using a single scrolling line with
special characters to represent line breaks. The read-only style is similar to the simple and custom styles except that
the text is not editable.

40 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.21: Figure 25: Code editor styles

The auto_set keyword parameter is a Boolean value indicating whether the trait being edited should be updated with
every keystroke (True) or only when the editor loses focus, i.e., when the user tabs away from it or closes the window
(False). The default value of this parameter is True.

ColorEditor()

Suitable for Color

Default for Color

Optional parameters mapped

The editors generated by ColorEditor() are designed to enable the user to display a Color trait or edit it by selecting a
color from the palette available in the underlying GUI toolkit. The four styles of color editor are shown in Figure 26.

In the simple style, the editor appears as a text box whose background is a sample of the currently selected color. The
text in the box is either a color name or a tuple of the form (r, g, b) where r, g, and b are the numeric values of the red,
green and blue color components respectively. (Which representation is used depends on how the value was entered.)
The text value is not directly editable in this style of editor; instead, clicking on the text box displays a pop-up panel
similar in appearance and function to the custom style.

The custom style includes a labeled color swatch on the left, representing the current value of the Color trait, and a
palette of common color choices on the right. Clicking on any tile of the palette changes the color selection, causing
the swatch to update accordingly. Clicking on the swatch itself causes a more detailed, platform-specific interface to
appear in a dialog box, such as is shown in Figure 27.

The text style of editor looks exactly like the simple style, but the text box is editable (and clicking on it does not open
a pop-up panel). The user must enter a recognized color name or a properly formatted (r, g, b) tuple.

1.8. The Predefined Trait Editor Factories 41

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.22: Figure 26: Color editor styles

Fig. 1.23: Figure 27: Custom color selection dialog box for Microsoft Windows XP

42 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

The read-only style displays the text representation of the currently selected Color value (name or tuple) on a
minimally-sized background of the corresponding color.

For advanced users: The mapped keyword parameter of ColorEditor() is a Boolean value indicating whether the trait
being edited has a built-in mapping of user-oriented representations (e.g., strings) to internal representations. Since
ColorEditor() is generally used only for Color traits, which are mapped (e.g., ‘cyan’ to wx.Colour(0,255,255)), this
parameter defaults to True and is not of interest to most programmers. However, it is possible to define a custom
color trait that uses ColorEditor() but is not mapped (i.e., uses only one representation), which is why the attribute is
available.

CompoundEditor()

Suitable for special

Default for “compound” traits

Optional parameters auto_set

An editor generated by CompoundEditor() consists of a combination of the editors for trait types that compose the
compound trait. The widgets for the compound editor are of the style specified for the compound editor (simple,
custom, etc.). The editors shown in Figure 28 are for the following trait, whose value can be an integer between 1 and
6, or any of the letters ‘a’ through ‘f’:

compound_trait = Trait(1, Range(1, 6), 'a', 'b', 'c', 'd', 'e', 'f')

Fig. 1.24: Figure 28: Example compound editor styles

The auto_set keyword parameter is a Boolean value indicating whether the trait being edited should be updated with
every keystroke (True) or only when the editor loses focus, i.e., when the user tabs away from it or closes the window
(False). The default value of this parameter is True.

CSVListEditor()

Suitable for lists of simple data types

Default for none

Optional parameters auto_set, enter_set, ignore_trailing_sep, sep

This editor provides a line of text for editing a list of certain simple data types. The following List traits can be edited
by a CSVListEditor:

1.8. The Predefined Trait Editor Factories 43

TraitsUI 4 User Manual, Release 6.0.0

• List(Int)

• List(Float)

• List(Str)

• List(Enum(‘string1’, ‘string2’, etc))

• List(Range(low= low value or trait name, high= high value or trait name))

The ‘text’, ‘simple’ and ‘custom’ styles are all the same. They provide a single line of text in which the user can enter
the list. The ‘readonly’ style provides a line of text that can not be edited by the user.

The default separator of items in the list is a comma. This can be overridden with the sep keyword parameter.

Parameters

auto_set [bool] If auto_set is True, each key pressed by the user triggers validation of the input, and if it is valid, the
value of the object being edited is updated. Default: True

enter_set [bool] If enter_set is True, the input is updated when the user presses the Enter key. Default: False

sep [str or None] The separator of the list item in the text field. If sep is None, each contiguous span of whitespace
is a separator. (Note: After the text field is split at the occurrences of sep, leading and trailing whitespace is
removed from each item before converting to the underlying data type.) Default: ‘,’ (a comma)

ignore_trailing_sep [bool] If ignore_trailing_sep is True, the user may enter a trailing separator (e.g. ‘1, 2, 3,’) and it
will be ignored. If this is False, a trailing separator is an error. Default: True

See Also

ListEditor, TextEditor

DefaultOverride()

Suitable for (any)

Default for (none)

The DefaultOverride() is a factory that takes the trait’s default editor and customizes it with the specified parameters.
This is useful when a trait defines a default editor using some of its data, e.g. Range or Enum, and you want to tweak
some of the other parameters without having recreate that data.

For example, the default editor for Range(low=0, high=1500) has ‘1500’ as the upper label. To change it to ‘Max’
instead, use:

View(Item('my_range', editor=DefaultOverride(high_label='Max'))

DirectoryEditor()

Suitable for Directory

Default for Directory

Optional parameters entries, filter, filter_name, reload_name, truncate_ext, dclick_name

44 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.25: Figure 29: Directory editor styles

A directory editor enables the user to display a Directory trait or set it to some directory in the local system hierarchy.
The four styles of this editor are shown in Figure 29.

In the simple style, the current value of the trait is displayed in a combo box to the left of a button labeled ‘. . . ’. The
user can type a new path directly into the text box, select a previous value from the droplist of the combo box, or use
the button to bring up a directory browser panel similar to the custom style of editor.

When the user selects a directory in this browser, the panel collapses, and control is returned to the original editor
widget, which is automatically populated with the new path string.

The user can also drag and drop a directory object onto the simple style editor.

The custom style displays a directory browser panel, in which the user can expand or collapse directory structures, and
click a folder icon to select a directory.

The text style of editor is simply a text box into which the user can type a directory path. The ‘readonly’ style is
identical to the text style, except that the text box is not editable.

The optional parameters are the same as the FileEditor.

No validation is performed on Directory traits; the user must ensure that a typed-in value is in fact an actual directory
on the system.

EnumEditor()

Suitable for Enum, Any

Default for Enum

Required parameters for non-Enum traits: values or name

Optional parameters cols, evaluate, mode

The editors generated by EnumEditor() enable the user to pick a single value from a closed set of values.

The simple style of editor is a drop-down list box.

The custom style is a set of radio buttons. Use the cols parameter to specify the number of columns of radio buttons.

1.8. The Predefined Trait Editor Factories 45

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.26: Figure 30: Enumeration editor styles

The text style is an editable text field; if the user enters a value that is not in enumerated set, the background of the
field turns red, to indicate an error. You can specify a function to evaluate text input, using the evaluate parameter.

The read-only style is the value of the trait as static text.

If the trait attribute that is being edited is not an enumeration, you must specify either the trait attribute (with the name
parameter), or the set of values to display (with the values parameter). The name parameter can be an extended trait
name. The values parameter can be a list, tuple, or dictionary, or a “mapped” trait.

By default, an enumeration editor sorts its values alphabetically. To specify a different order for the items, give it a
mapping from the normal values to ones with a numeric tag. The enumeration editor sorts the values based on the
numeric tags, and then strips out the tags.

Example 15: Enumeration editor with mapped values

enum_editor.py -- Example of using an enumeration editor
from traits.api import HasTraits, Enum
from traitsui.api import EnumEditor

Class EnumExample(HasTraits):
priority = Enum('Medium', 'Highest',

'High',
'Medium',
'Low',
'Lowest')

view = View(Item(name='priority',
editor=EnumEditor(values={

'Highest' : '1:Highest',
'High' : '2:High',
'Medium' : '3:Medium',
'Low' : '4:Low',
'Lowest' : '5:Lowest', })))

The enumeration editor strips the characters up to and including the colon. It assumes that all the items have the colon
in the same position; therefore, if some of your tags have multiple digits, you should use zeros to pad the items that
have fewer digits.

46 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

FileEditor()

Suitable for File

Default for File

Optional parameters entries, filter, filter_name, reload_name, truncate_ext, dclick_name

A file editor enables the user to display a File trait or set it to some file in the local system hierarchy. The styles of this
editor are shown in Figure 31.

Fig. 1.27: Figure 31: File editor styles

The default version of the simply style displays a text box and a Browse button. Clicking Browse opens a platform-
specific file selection dialog box. If you specify the entries keyword parameter with an integer value to the factory
function, the simple style is a combo box and a button labeled The user can type a file path in the combo box,
or select one of entries previous values. Clicking the . . . button opens a browser panel similar to the custom style of
editor. When the user selects a file in this browser, the panel collapses, and control is returned to the original editor
widget, which is automatically populated with the new path string.

For either version of the simple style, the user can drag and drop a file object onto the control.

The custom style displays a file system browser panel, in which the user can expand or collapse directory structures,
and click an icon to select a file.

You can specify a list of filters to apply to the file names displayed, using the filter keyword parameter of the factory
function. In Figure 31, the “Custom with Filter” editor uses a filter value of ['*.py'] to display only Python source
files. You can also specify this parameter for the simple style, and it will be used in the file selection dialog box or

1.8. The Predefined Trait Editor Factories 47

TraitsUI 4 User Manual, Release 6.0.0

pop-up file system browser panel. Alternatively, you can specify filter_name, whose value is an extended trait name
of a trait attribute that contains the list of filters.

The reload_name parameter is an extended trait name of a trait attribute that is used to notify the editor when the view
of the file system needs to be reloaded.

The truncate_ext parameter is a Boolean that indicates whether the file extension is removed from the returned file-
name. It is False by default, meaning that the filename is not modified before it is returned.

The dclick_name parameter is an extended trait name of a trait event which is fired when the user double-clicks on a
file name when using the custom style.

FontEditor()

Suitable for Font

Default for Font

A font editor enables the user to display a Font trait or edit it by selecting one of the fonts provided by the underlying
GUI toolkit. The four styles of this editor are shown in Figure 32.

Fig. 1.28: Figure 32: Font editor styles

In the simple style, the currently selected font appears in a display similar to a text box, except that when the user
clicks on it, a platform-specific dialog box appears with a detailed interface, such as is shown in Figure 33. When the
user clicks OK, control returns to the editor, which then displays the newly selected font.

In the custom style, an abbreviated version of the font dialog box is displayed in-line. The user can either type the
name of the font in the text box or use the two drop-down lists to select a typeface and size.

In the text style, the user must type the name of a font in the text box provided. No validation is performed; the user
must enter the correct name of an available font. The read-only style is identical except that the text is not editable.

HTMLEditor()

Suitable for HTML, string traits

Default for HTML

Optional parameters format_text

48 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.29: Figure 33: Example font dialog box for Microsoft Windows

The “editor” generated by HTMLEditor() interprets and displays text as HTML. It does not support the user editing
the text that it displays. It generates the same type of editor, regardless of the style specified. Figure 34 shows an
HTML editor in the upper pane, with a code editor in the lower pane, displaying the uninterpreted text.

Note: HTML support is limited in the wxWidgets toolkit.

The set of tags supported by the wxWidgets implementation of the HTML editor is a subset of the HTML 3.2 standard.
It does not support style sheets or complex formatting. Refer to the wxWidgets documentation for details.

If the format_text argument is True, then the HTML editor supports basic implicit formatting, which it converts to
HTML before passing the text to the HTML interpreter. The implicit formatting follows these rules:

• Indented lines that start with a dash (‘-‘) are converted to unordered lists.

• Indented lines that start with an asterisk (‘*’) are converted to ordered lists.

• Indented lines that start with any other character are converted to code blocks.

• Blank lines are converted to paragraph separators.

The following text produces the same displayed HTML as in Figure 34, when format_text is True:

This is a code block:

def foo (bar):
print 'bar:', bar

This is an unordered list:
- An
- unordered
- list

1.8. The Predefined Trait Editor Factories 49

http://www.lpthe.jussieu.fr/~zeitlin/wxWindows/docs/wxwin_wxhtml.html

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.30: Figure 34: Example HTML editor, with code editor showing original text

50 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

This is an ordered list:

* One

* Two

* Three

ImageEnumEditor()

Suitable for Enum, Any

Default for (none)

Required parameters for non-Enum traits: values or name

Optional parameters path, klass or module, cols, evaluate, suffix

The editors generated by ImageEnumEditor() enable the user to select an item in an enumeration by selecting an image
that represents the item.

Fig. 1.31: Figure 35: Editor styles for image enumeration

The custom style of editor displays a set of images; the user selects one by clicking it, and it becomes highlighted to
indicate that it is selected.

The simple style displays a button with an image for the currently selected item. When the user clicks the button, a
pop-up panel displays a set of images, similar to the custom style. The user clicks an image, which becomes the new
image on the button.

The text style does not display images; it displays the text representation of the currently selected item. The user must
type the text representation of another item to select it.

The read-only style displays the image for the currently selected item, which the user cannot change.

The ImageEnumEditor() function accepts the same parameters as the EnumEditor() function (see EnumEditor()), as
well as some additional parameters.

Note: Image enumeration editors do not use ImageResource.

Unlike most other images in the Traits and TraitsUI packages, images in the wxWindows implementation of image
enumeration editors do not use the PyFace ImageResource class.

In the wxWidgets implementation, image enumeration editors use the following rules to locate images to use:

1. Only GIF (.gif) images are currently supported.

1.8. The Predefined Trait Editor Factories 51

TraitsUI 4 User Manual, Release 6.0.0

2. The base file name of the image is the string representation of the value, with spaces replaced by underscores
and the suffix argument, if any, appended. Note that suffix is not a file extension, but rather a string appended
to the base file name. For example, if suffix is _origin and the value is ‘top left’, the image file name is
top_left_origin.gif.

3. If the path parameter is defined, it is used to locate the file. It can be absolute or relative to the file where the
image enumeration editor is defined.

4. If path is not defined and the klass parameter is defined, it is used to locate the file. The klass parameter must
be a reference to a class. The editor searches for an images subdirectory in the following locations:

(a) The directory that contains the module that defines the class.

(b) If the class was executed directly, the current working directory.

(c) If path and klass are not defined, and the module parameter is defined, it is used to locate the file. The
module parameter must be a reference to a module. The editor searches for an images subdirectory of the
directory that contains the module.

(d) If path, klass, and module are not defined, the editor searches for an images subdirectory of the traitsui.wx
package.

(e) If none of the above paths are defined, the editor searches for an images directory that is a sibling of the
directory from which the application was run.

InstanceEditor()

Suitable for Instance, Property, self, ThisClass, This

Default for Instance, self, ThisClass, This

Optional parameters cachable, editable, id, kind, label, name, object, orientation, values, view

The editors generated by InstanceEditor() enable the user to select an instance, or edit an instance, or both.

Editing a Single Instance

In the simplest case, the user can modify the trait attributes of an instance assigned to a trait attribute, but cannot
modify which instance is assigned.

Fig. 1.32: Figure 36: Editor styles for instances

52 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

The custom style displays a user interface panel for editing the trait attributes of the instance. The simple style displays
a button, which when clicked, opens a window containing a user interface for the instance. The kind parameter specifies
the kind of window to open (see Stand-alone Windows). The label parameter specifies a label for the button in the
simple interface. The view parameter specifies a view to use for the referenced instance’s user interface; if this is not
specified, the default view for the instance is used (see Defining a Default View).

The text and read-only styles display the string representation of the instance. They therefore cannot be used to modify
the attributes of the instance. A user could modify the assigned instance if they happened to know the memory address
of another instance of the same type, which is unlikely. These styles can useful for prototyping and debugging, but not
for real applications.

Selecting Instances

You can add an option to select a different instance to edit. Use the name parameter to specify the extended name of
a trait attribute in the context that contains a list of instances that can be selected or edited. (See The View Context
for an explanation of contexts.) Using these parameters results in a drop-drown list box containing a list of text
representations of the available instances. If the instances have a name trait attribute, it is used for the string in the
list; otherwise, a user-friendly version of the class name is used.

For example, the following code defines a Team class and a Person class. A Team has a roster of Persons, and a
captain. In the view for a team, the user can pick a captain and edit that person’s information. Example 16: Instance
editor with instance selection

instance_editor_selection.py -- Example of an instance editor
with instance selection

from traits.api \
import HasStrictTraits, Int, Instance, List, Regex, Str

from traitsui.api \
import View, Item, InstanceEditor

class Person (HasStrictTraits):
name = Str
age = Int
phone = Regex(value = '000-0000',

regex = '\d\d\d[-]\d\d\d\d')

traits_view = View('name', 'age', 'phone')

people = [
Person(name = 'Dave', age = 39, phone = '555-1212'),
Person(name = 'Mike', age = 28, phone = '555-3526'),
Person(name = 'Joe', age = 34, phone = '555-6943'),
Person(name = 'Tom', age = 22, phone = '555-7586'),
Person(name = 'Dick', age = 63, phone = '555-3895'),
Person(name = 'Harry', age = 46, phone = '555-3285'),
Person(name = 'Sally', age = 43, phone = '555-8797'),
Person(name = 'Fields', age = 31, phone = '555-3547')

]

class Team (HasStrictTraits):

name = Str
captain = Instance(Person)
roster = List(Person)

traits_view = View(Item('name'),

1.8. The Predefined Trait Editor Factories 53

TraitsUI 4 User Manual, Release 6.0.0

Item('_'),
Item('captain',

label='Team Captain',
editor =

InstanceEditor(name = 'roster',
editable = True),

style = 'custom',
),

buttons = ['OK'])

if __name__ == '__main__':
Team(name = 'Vultures',

captain = people[0],
roster = people).configure_traits()

Fig. 1.33: Figure 37: User interface for Example 16

If you want the user to be able to select instances, but not modify their contents, set the editable parameter to False. In
that case, only the selection list for the instances appears, without the user interface for modifying instances.

Allowing Instances

You can specify what types of instances can be edited in an instance editor, using the values parameter. This parameter
is a list of items describing the type of selectable or editable instances. These items must be instances of subclasses of
traitsui.api.InstanceChoiceItem. If you want to generate new instances, put an InstanceFactoryChoice instance in the
values list that describes the instance to create. If you want certain types of instances to be dropped on the editor, use
an InstanceDropChoice instance in the values list.

ListEditor()

Suitable for List

54 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Default for List18

Optional parameters editor, rows, style, trait_handler, use_notebook

The following parameters are used only if use_notebook is True: deletable, dock_style, export,
page_name, select, view

The editors generated by ListEditor() enable the user to modify the contents of a list, both by editing the individual
items and by adding, deleting, and reordering items within the list.

Fig. 1.34: Figure 38: List editor styles

The simple style displays a single item at a time, with small arrows on the right side to scroll the display. The custom
style shows multiple items. The number of items displayed is controlled by the rows parameter; if the number of items
in the list exceeds this value, then the list display scrolls. The editor used for each item in the list is determined by the
editor and style parameters. The text style of list editor is identical to the custom style, except that the editors for the
items are text editors. The read-only style displays the contents of the list as static text.

By default, the items use the trait handler appropriate to the type of items in the list. You can specify a different handler
to use for the items using the trait_handler parameter.

For the simple, custom, and text list editors, a button appears to the left of each item editor; clicking this button opens
a context menu for modifying the list, as shown in Figure 39.

In addition to the four standard styles for list editors, a fifth list editor user interface option is available. If use_notebook
is True, then the list editor displays the list as a “notebook” of tabbed pages, one for each item in the list, as shown in
Figure 40. This style can be useful in cases where the list items are instances with their own views. If the deletable
parameter is True, a close box appears on each tab, allowing the user to delete the item; the user cannot add items
interactively through this style of editor.

ListStrEditor()

Suitable for ListStr or List of values mapped to strings

Default for (none)
18 If a List is made up of HasTraits objects, a table editor is used instead; see TableEditor().

1.8. The Predefined Trait Editor Factories 55

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.35: Figure 39: List editor showing context menu

Fig. 1.36: Figure 40: Notebook list editor

56 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Optional parameters activated, activated_index, adapter, adapter_name, auto_add, drag_move, ed-
itable, horizontal_lines, images, multi_select, operations, right_clicked, right_clicked_index, se-
lected, selected_index, title, title_name

ListStrEditor() generates a list of selectable items corresponding to items in the underlying trait attribute. All styles of
the editor are the same. The parameters to ListStrEditor() control aspects of the behavior of the editor, such as what
operations it allows on list items, whether items are editable, and whether more than one can be selected at a time.
You can also specify extended references for trait attributes to synchronize with user actions, such as the item that is
currently selected, activated for editing, or right-clicked.

Fig. 1.37: Figure 41: List string editor

NullEditor()

Suitable for controlling layout

Default for (none)

The NullEditor() factory generates a completely empty panel. It is used by the Spring subclass of Item, to generate a
blank space that uses all available extra space along its layout orientation. You can also use it to create a blank area of
a fixed height and width.

RangeEditor()

Suitable for Range

Default for Range

Optional parameters auto_set, cols, enter_set, format, high_label, high_name, label_width, low_label,
low_name, mode

The editors generated by RangeEditor() enable the user to specify numeric values within a range. The widgets used
to display the range vary depending on both the numeric type and the size of the range, as described in Table 8 and
shown in Figure 42. If one limit of the range is unspecified, then a text editor is used.

1.8. The Predefined Trait Editor Factories 57

TraitsUI 4 User Manual, Release 6.0.0

Table 8: Range editor widgets

Data type/range size Simple Custom Text Read-
only

Integer: Small Range (Size 0-16) Slider with text
box

Radio buttons Text
field

Static text

Integer: Medium Range (Size 17-101) Slider with text
box

Slider with text
box

Text
field

Static text

Integer: Large Range (Size > 101) Spin box Spin box Text
field

Static text

Floating Point: Small Range (Size <=
100.0)

Slider with text
box

Slider with text
box

Text
field

Static text

Floating Point: Large Range (Size > 100.0) Large-range slider Large-range slider Text
field

Static text

Fig. 1.38: Figure 42: Range editor widgets

In the large-range slider, the arrows on either side of the slider move the editable range, so that the user can move the
slider more precisely to the desired value.

You can override the default widget for each type of editor using the mode parameter, which can have the following
values:

• ‘auto’: The default widget, as described in Table 8

• ‘slider’: Simple slider with text field

• ‘xslider’: Large-range slider with text field

• ‘spinner’: Spin box with increment/decrement buttons

• ‘enum’: Radio buttons

• ‘text’: Text field

You can set the limits of the range dynamically, using the low_name and high_name parameters to specify trait at-
tributes that contain the low and high limit values; use low_label, high_label and label_width to specify labels for the
limits.

58 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

RGBColorEditor()

Suitable for RGBColor

Default for RGBColor

Optional parameters mapped

Editors generated by RGBColorEditor() are identical in appearance to those generated by ColorEditor(), but they are
used for RGBColor traits. See ColorEditor() for details.

SetEditor()

Suitable for List

Default for (none)

Required parameters Either values or name

Optional parameters can_move_all, left_column_title, object, ordered, right_column_title

In the editors generated by SetEditor(), the user can select a subset of items from a larger set. The two lists are
displayed in list boxes, with the candidate set on the left and the selected set on the right. The user moves an item from
one set to the other by selecting the item and clicking a direction button (> for left-to-right and < for right-to-left).

Additional buttons can be displayed, depending on two Boolean parameters:

• If can_move_all is True, additional buttons appear, whose function is to move all items from one side to the
other (>> for left-to-right and << for right-to-left).

• If ordered is True, additional buttons appear, labeled Move up and Move down, which affect the position of the
selected item within the set in the right list box.

Fig. 1.39: Figure 43: Set editor showing all possible buttons

You can specify the set of candidate items in either of two ways:

• Set the values parameter to a list, tuple, dictionary, or mapped trait.

• Set the name parameter to the extended name of a trait attribute that contains the list.

1.8. The Predefined Trait Editor Factories 59

TraitsUI 4 User Manual, Release 6.0.0

ShellEditor()

Suitable for special

Default for PythonValue

The editor generated by ShellEditor() displays an interactive Python shell.

Fig. 1.40: Figure 44: Python shell editor

TextEditor()

Suitable for all

Default for Str, String, Password, Unicode, Int, Float, Dict, CStr, CUnicode, and any trait that does not
have a specialized TraitHandler

Optional parameters auto_set, enter_set, evaluate, evaluate_name, mapping, multi_line, password

The editor generated by TextEditor() displays a text box. For the custom style, it is a multi-line field; for the read-only
style, it is static text. If password is True, the text that the user types in the text box is obscured.

Fig. 1.41: Figure 45: Text editor styles for integers

60 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.42: Figure 46: Text editor styles for strings

Fig. 1.43: Figure 47: Text editor styles for passwords

1.8. The Predefined Trait Editor Factories 61

TraitsUI 4 User Manual, Release 6.0.0

You can specify whether the trait being edited is updated on every keystroke (auto_set=True) or when the user
presses the Enter key (enter_set=True). If auto_set and enter_set are False, the trait is updated when the user
shifts the input focus to another widget.

You can specify a mapping from user input values to other values with the mapping parameter. You can specify a
function to evaluate user input, either by passing a reference to it in the evaluate parameter, or by passing the extended
name of a trait that references it in the evaluate_name parameter.

TitleEditor()

Suitable for string traits

Default for (none)

TitleEditor() generates a read-only display of a string value, formatted as a heading. All styles of the editor are
identical. Visually, it is similar to a Heading item, but because it is an editor, you can change the text of the heading
by modifying the underlying attribute.

TupleEditor()

Suitable for Tuple

Default for Tuple

Optional parameters cols, editors, labels, traits

The simple and custom editors generated by TupleEditor() provide a widget for each slot of the tuple being edited,
based on the type of data in the slot. The text and read-only editors edit or display the text representation of the tuple.

Fig. 1.44: Figure 48: Tuple editor styles

62 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

You can specify the number of columns to use to lay out the widgets with the cols parameter. You can specify labels
for the widgets with the labels parameter. You can also specify trait definitions for the slots of the tuple; however, this
is usually implicit in the tuple being edited.

You can supply a list of editors to be used for each corresponding tuple slot. If the editors list is missing, or is shorter
than the length of the tuple, default editors are used for any tuple slots not defined in the list. This feature allows you
to substitute editors, or to supply non-default parameters for editors.

ValueEditor()

Suitable for (any)

Default for (none)

Optional parameters auto_open

ValueEditor() generates a tree editor that displays Python values and objects, including all the objects’ members. For
example, Figure 49 shows a value editor that is displayed by the “pickle viewer” utility in enthought.debug.

Fig. 1.45: Figure 49: Value editor from Pickle Viewer

1.9 Advanced Trait Editors

The editor factories described in the following sections are more advanced than those in the previous section. In some
cases, they require writing additional code; in others, the editors they generate are intended for use in complex user
interfaces, in conjunction with other editors.

1.9.1 CustomEditor()

Suitable for Special cases

1.9. Advanced Trait Editors 63

TraitsUI 4 User Manual, Release 6.0.0

Default for (none)

Required parameters factory

Optional parameters args

Use CustomEditor() to create an “editor” that is a non-Traits-based custom control. The factory parameter must be a
function that generates the custom control. The function must have the following signature:

factory_function(window_parent, editor*[, **args, **kwargs])

• window_parent: The parent window for the control

• editor: The editor object created by CustomEditor()

Additional arguments, if any, can be passed as a tuple in the args parameter of CustomEditor().

For an example of using CustomEditor(),examine the implementation of the NumericModelExplorer class in the en-
thought.model.numeric_model_explorer module; CustomEditor() is used to generate the plots in the user interface.

1.9.2 DropEditor()

Suitable for Instance traits

Default for (none)

Optional parameters binding, klass, readonly

DropEditor() generates an editor that is a text field containing a string representation of the trait attribute’s value. The
user can change the value assigned to the attribute by dragging and dropping an object on the text field, for example, a
node from a tree editor (See TreeEditor()). If the readonly parameter is True (the default), the user cannot modify the
value by typing in the text field.

You can restrict the class of objects that can be dropped on the editor by specifying the klass parameter.

You can specify that the dropped object must be a binding (enthought.naming.api.Binding) by setting the binding
parameter to True. If so, the bound object is retrieved and checked to see if it can be assigned to the trait attribute.

If the dropped object (or the bound object associated with it) has a method named drop_editor_value(), it is called to
obtain the value to assign to the trait attribute. Similarly, if the object has a method named drop_editor_update(), it is
called to update the value displayed in the text editor. This method requires one parameter, which is the GUI control
for the text editor.

1.9.3 DNDEditor()

Suitable for Instance traits

Default for (none)

Optional parameters drag_target, drop_target, image

DNDEditor() generates an editor that represents a file or a HasTraits instance as an image that supports dragging and
dropping. Depending on the editor style, the editor can be a drag source (the user can set the value of the trait attribute
by dragging a file or object onto the editor, for example, from a tree editor), or drop target (the user can drag from the
editor onto another target).

64 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Table 9: Drag-and-drop editor style variations

Editor Style Drag Source? Drop Target?
Simple Yes Yes
Custom No Yes
Read-only Yes No

1.9.4 KeyBindingEditor()

The KeyBindingEditor() factory differs from other trait editor factories because it generates an editor, not for a single
attribute, but for an object of a particular class, traitsui.key_bindings.KeyBindings. A KeyBindings object is a list of
bindings between key codes and handler methods. You can specify a KeyBindings object as an attribute of a View.
When the user presses a key while a View has input focus, the user interface searches the View for a KeyBindings that
contains a binding that corresponds to the key press; if such a binding does not exist on the View, it searches enclosing
Views in order, and uses the first matching binding, if any. If it does not find any matching bindings, it ignores the key
press.

A key binding editor is a separate dialog box that displays the string representation of each key code and a description
of the corresponding method. The user can click a text box, and then press a key or key combination to associate that
key press with a method.

Fig. 1.46: Figure 50: Key binding editor dialog box

The following code example creates a user interface containing a code editor with associated key bindings, and a
button that invokes the key binding editor.

1.9. Advanced Trait Editors 65

TraitsUI 4 User Manual, Release 6.0.0

Example 17: Code editor with key binding editor

key_bindings.py -- Example of a code editor with a
key bindings editor

from traits.api \
import Button, Code, HasPrivateTraits, Str

from traitsui.api \
import View, Item, Group, Handler, CodeEditor

from traitsui.key_bindings \
import KeyBinding, KeyBindings

key_bindings = KeyBindings(
KeyBinding(binding1 = 'Ctrl-s',

description = 'Save to a file',
method_name = 'save_file'),

KeyBinding(binding1 = 'Ctrl-r',
description = 'Run script',
method_name = 'run_script'),

KeyBinding(binding1 = 'Ctrl-k',
description = 'Edit key bindings',
method_name = 'edit_bindings')

)

TraitsUI Handler class for bound methods
class CodeHandler (Handler):

def save_file (self, info):
info.object.status = "save file"

def run_script (self, info):
info.object.status = "run script"

def edit_bindings (self, info):
info.object.status = "edit bindings"
key_bindings.edit_traits()

class KBCodeExample (HasPrivateTraits):

code = Code
status = Str
kb = Button(label='Edit Key Bindings')

view = View(Group (
Item('code',

style = 'custom',
resizable = True),

Item('status', style='readonly'),
'kb',
orientation = 'vertical',
show_labels = False,
),

id = 'KBCodeExample',
key_bindings = key_bindings,
title = 'Code Editor With Key Bindings',
resizable = True,

handler = CodeHandler())

66 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

def _kb_fired(self, event):
key_bindings.edit_traits()

if __name__ == '__main__':
KBCodeExample().configure_traits()

1.9.5 TableEditor()

Suitable for List(InstanceType)

Default for (none)

Required parameters columns or columns_name

Optional parameters See Traits API Reference, traitsui.wx.table_editor.ToolkitEditorFactory attributes.

TableEditor() generates an editor that displays instances in a list as rows in a table, with attributes of the instances as
values in columns. You must specify the columns in the table. Optionally, you can provide filters for filtering the set
of displayed items, and you can specify a wide variety of options for interacting with and formatting the table.

Fig. 1.47: Figure 51: Table editor

To see the code that results in Figure 51, refer to TableEditor_demo.py in the demos/TraitsUI Demo/
Standard Editors subdirectory of the Traits UI package. This example demonstrates object columns, expression
columns, filters, searching, and adding and deleting rows.

The parameters for TableEditor() can be grouped in several broad categories, described in the following sections.

• Specifying Columns

• Managing Items

• Editing the Table

• Defining the Layout

• Defining the Format

• Other User Interactions

1.9. Advanced Trait Editors 67

TraitsUI 4 User Manual, Release 6.0.0

Specifying Columns

You must provide the TableEditor() factory with a list of columns for the table. You can specify this list directly, as
the value of the columns parameter, or indirectly, in an extended context attribute referenced by the columns_name
parameter.

The items in the list must be instances of traitsui.api.TableColumn, or of a subclass of TableColumn. Some subclasses
of TableColumn that are provided by the TraitsUI package include ObjectColumn, ListColumn, NumericColumn,
ExpressionColumn, CheckboxColumn and ProgressColumn. (See the Traits API Reference for details about these
classes.) In practice, most columns are derived from one of these subclasses, rather than from TableColumn. For the
usual case of editing trait attributes on objects in the list, use ObjectColumn. You must specify the name parameter to
the ObjectColumn() constructor, referencing the name of the trait attribute to be edited.

You can specify additional columns that are not initially displayed using the other_columns parameter. If the config-

urable parameter is True (the default), a Set user preferences for table icon () appears on the table’s toolbar. When
the user clicks this icon, a dialog box opens that enables the user to select and order the columns displayed in the
table, as shown in Figure 52. (The dialog box is implemented using a set editor; see SetEditor().) Any columns that
were specified in the other_columns parameter are listed in the left list box of this dialog box, and can be displayed by
moving them into the right list box.

Fig. 1.48: Figure 52: Column selection dialog box for a table editor

Managing Items

Table editors support several mechanisms to help users locate items of interest.

68 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Organizing Items

Table editors provide two mechanisms for the user to organize the contents of a table: sorting and reordering. The
user can sort the items based on the values in a column, or the user can manually order the items. Usually, only one of
these mechanisms is used in any particular table, although the TraitsUI package does not enforce a separation. If the
user has manually ordered the items, sorting them would throw away that effort.

If the reorderable parameter is True, Move up () and Move down () icons appear in the table toolbar. Clicking
one of these icons changes the position of the selected item.

If the sortable parameter is True (the default), then the user can sort the items in the table based on the values in a
column by Control-clicking the header of that column.

• On the first click, the items are sorted in ascending order. The characters >> appear in the column header to
indicate that the table is sorted ascending on this column’s values.

• On the second click, the items are sorted descending order. The characters << appear in the column header to
indicate that the table is sorted descending on this column’s values.

• On the third click, the items are restored to their original order, and the column header is undecorated.

If the sort_model parameter is true, the items in the list being edited are sorted when the table is sorted. The default
value is False, in which case, the list order is not affected by sorting the table.

If sortable is True and sort_model is False, then a Do not sort columns icon () appears in the table toolbar.
Clicking this icon restores the original sort order.

If the reverse parameter is True, then the items in the underlying list are maintained in the reverse order of the items
in the table (regardless of whether the table is sortable or reorderable).

Filtering and Searching

You can provide an option for the user to apply a filter to a table, so that only items that pass the filter are displayed.
This feature can be very useful when dealing with lengthy lists. You can specify a filter to apply to the table either
directly, or via another trait. Table filters must be instances of traitsui.api.TableFilter, or of a subclass of TableFilter.
Some subclasses of TableFilter that are provided by the TraitsUI package include EvalTableFilter, RuleTableFilter, and
MenuTableFilter. (See the Traits API Reference for details about these classes.) The TraitsUI package also provides
instances of these filter classes as “templates”, which cannot be edited or deleted, but which can be used as models for
creating new filters.

The filter parameter specifies a filter that is applied to the table when it is first displayed. The filter_name parameter
specifies an extended trait name for a trait that is either a table filter object or a callable that accepts an object and
returns True if the object passes the filter criteria, or false if it does not. You can use filter_name to embed a view of a
table filter in the same view as its table.

You can specify use the filters parameter to specify a list of table filters that are available to apply to a table. When
filters is specified, a drop-down list box appears in the table toolbar, containing the filters that are available for the user
to apply. When the user selects a filter, it is automatically applied to the table. A status message to the right of the
filters list indicates what subset of the items in the table is currently displayed. A special item in the filter list, named
Customize, is always provided; clicking this item opens a dialog box that enables the user to create new filters, or to
edit or delete existing filters (except templates).

You can also provide an option for the user to use filters to search the table. If you set the search parameter to an

instance of TableFilter (or of a subclass), a Search table icon () appears on the table toolbar. Clicking this icon

1.9. Advanced Trait Editors 69

TraitsUI 4 User Manual, Release 6.0.0

opens a Search for dialog box, which enables the user to specify filter criteria, to browse through matching items, or
select all matching items.

Interacting with Items

As the user clicks in the table, you may wish to enable certain program behavior.

The value of the selection_mode parameter specifies how the user can make selections in the grid:

• cell: A single cell at a time

• cells: Multiple cells

• column: A single column at a time

• columns: Multiple columns

• row: A single row at a time

• rows: Multiple rows

You can use the selected parameter to specify the name of a trait attribute in the current context to synchronize with
the user’s current selection. For example, you can enable or disable menu items or toolbar icons depending on which
item is selected. The synchronization is two-way; you can set the attribute referenced by selected to force the table to
select a particular item.

You can use the selected_indices parameter to specify the name of a trait attribute in the current context to synchronize
with the indices of the table editor selection. The content of the selection depends on the selection_mode value:

• cell: The selection is a tuple of the form (object, column_name), where object is the object contains the
selected cell, and column_name is the name of the column the cell is in. If there is no selection, the
tuple is (None, ‘’).

• cells: The selection is a list of tuples of the form (object, column_name), with one tuple for each selected
cell, in order from top to bottom and left to right. If there is no selection, the list is empty.

• column: The selection is the name of the selected column, or the empty string if there is no selection.

• columns: The selection is a list containing the names of the selected columns, in order from left to right. If
there is no selection, the list is empty.

• row: The selection is either the selected object or None if nothing is selected in the table.

• rows: The selection is a list of the selected objects, in ascending row order. If there is no selection, the list is
empty.

The on_select and on_dclick parameters are callables to invoke when the user selects or double-clicks an item, respec-
tively.

You can define a shortcut menu that opens when the user right-clicks an item. Use the menu parameter to specify a
TraitsUI or PyFace Menu, containing Action objects for the menu commands.

Editing the Table

The Boolean editable parameter controls whether the table or its items can be modified in any way. This parameter
defaults to True, except when the style is ‘readonly’. Even when the table as a whole is editable, you can control
whether individual columns are editable through the editable attribute of TableColumn.

70 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Adding Items

To enable users to add items to the table, specify as the row_factory parameter a callable that generates an object that
can be added to the list in the table; for example, the class of the objects in the table. When row_factory is specified,

an Insert new item icon () appears in the table toolbar, which generates a new row in the table. Optionally, you can
use row_factory_args and row_factory_kw to specify positional and keyword arguments to the row factory callable.

To save users the trouble of mousing to the toolbar, you can enable them to add an item by selecting the last row in
the table. To do this, set auto_add to True. In this case, the last row is blank until the user sets values. Pressing Enter
creates the new item and generates a new, blank last row.

Deleting Items

The deletable parameter controls whether items can be deleted from the table. This parameter can be a Boolean
(defaulting to False) or a callable; the callable must take an item as an argument and handle deleting it. If deletable is

not False, a Delete current item icon () appears on the table toolbar; clicking it deletes the item corresponding to
the row that is selected in the table.

Modifying Items

The user can modify items in two ways.

• For columns that are editable, the user can change an item’s value directly in the table. The editor used for each
attribute in the table is the simple style of editor for the corresponding trait.

• Alternatively, you can specify a View for editing instances, using the edit_view parameter. The resulting user
interface appears in a subpanel to the right or below the table (depending on the orientation parameter). You
can specify a handler to use with the view, using edit_view_handler. You can also specify the subpanel’s height
and width, with edit_view_height and edit_view_width.

Defining the Layout

Some of the parameters for the TableEditor() factory affect global aspects of the display of the table.

• auto_size: If True, the cells of the table automatically adjust to the optimal size based on their contents.

• orientation: The layout of the table relative to its associated editor pane. Can be ‘horizontal’ or ‘vertical’.

• rows: The number of visible rows in the table.

• show_column_labels: If True (the default), displays labels for the columns. You can specify the labels to use in
the column definitions; otherwise, a “user friendly” version of the trait attribute name is used.

• show_toolbar: If False, the table toolbar is not displayed, regardless of whether other settings would normally
create a toolbar. The default is True.

Defining the Format

The TableEditor() factory supports a variety of parameters to control the visual formatting of the table, such
as colors, fonts, and sizes for lines, cells, and labels. For details, refer to the Traits API Reference, trait-
sui.wx.table_editor.ToolkitEditorFactory attributes.

You can also specify formatting options for individual table columns when you define them.

1.9. Advanced Trait Editors 71

TraitsUI 4 User Manual, Release 6.0.0

Other User Interactions

The table editor supports additional types of user interaction besides those controlled by the factory parameters.

• Column dragging: The user can reorganize the column layout of a table editor by clicking and dragging a column
label to its new location. If you have enabled user preferences for the view and table editor (by specifying view
and item IDs), the new column layout is persisted across user sessions.

• Column resizing: The user can resize a column by dragging the column separator (in one of the data rows) to a
new position. Because of the column-dragging support, clicking the column separator in the column label row
does not work.

• Data dragging: The user can drag the contents of any cell by clicking and dragging.

1.9.6 TabularEditor()

Suitable for lists, arrays, and other large sequences of objects

Default for (none)

Required parameters adapter

Optional parameters activated, clicked, column_clicked, dclicked, drag_move, editable, horizon-
tal_lines, images, multi_select, operations, right_clicked, right_dclicked, selected, selected_row,
show_titles, vertical_lines

The TabularEditor() factory can be used for many of the same purposes as the TableEditor() factory, that is, for
displaying a table of attributes of lists or arrays of objects. While similar in function, the tabular editor has advantages
and disadvantages relative to the table editor.

Advantages

• Very fast: The tabular editor uses a virtual model, which accesses data from the underlying model only as
needed. For example, if you have a million-element array, but can display only 50 rows at a time, the editor
requests only 50 elements of data at a time.

• Very flexible data model: The editor uses an adapter model to interface with the underlying data. This strategy
allows it to easily deal with many types of data representation, from list of objects, to arrays of numbers, to
tuples of tuples, and many other formats.

• Supports useful data operations, including:

– Moving the selection up and down using the keyboard arrow keys.

– Moving rows up and down using the keyboard.

– Inserting and deleting items using the keyboard.

– Initiating editing of items using the keyboard.

– Dragging and dropping of table items to and from the editor, including support for both copy and move
operations for single and multiple items.

• Visually appealing: The tabular editor, in general, uses the underlying operating system’s native table or grid
control, and as a result often looks better than the control used by the table editor.

• Supports displaying text and images in any cell. However, the images displayed must be all the same size for
optimal results.

72 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Disadvantages

• Not as full-featured: The table editor includes support for arbitrary data filters, searches, and different types of
sorting. These differences may narrow as features are added to the tabular editor.

• Limited data editing capabilities: The tabular editor supports editing only textual values, whereas the table
editor supports a wide variety of column editors, and can be extended with more as needed. This is due to
limitations of the underlying native control used by the tabular editor.

TabularAdapter

The tabular editor works in conjunction with an adapter class, derived from TabularAdapter. The tabular adapter
interfaces between the tabular editor and the data being displayed. The tabular adapter is the reason for the flexibility
and power of the tabular editor to display a wide variety of data.

The most important attribute of TabularAdapter is columns, which is list of columns to be displayed. Each entry in the
columns list can be either a string, or a tuple consisting of a string and another value, which can be of any type. The
string is used as the label for the column. The second value in the tuple, called the column ID, identifies the column to
the adapter. It is typically a trait attribute name or an integer index, but it can be any value appropriate to the adapter. If
only a string is specified for an entry, then the index of the entry within the columns list is used as that entry’s column
ID.

Attributes on TabularAdapter control the appearance of items, and aspects of interaction with items, such as whether
they can be edited, and how they respond to dragging and dropping. Setting any of these attributes on the adapter
subclass sets the global behavior for the editor. Refer to the Traits API Reference for details of the available attributes.

You can also specify these attributes for a specific class or column ID, or combination of class and column ID. When
the TabularAdapter needs to look up the value of one of its attributes for a specific item in the table, it looks for
attributes with the following naming conventions in the following order:

1. classname_columnid_attribute

2. classname_attribute

3. columnid_attribute

4. attribute

For example, to find the text_color value for an item whose class is Person and whose column ID is ‘age’, the
get_text_color() method looks for the following attributes in sequence, and returns the first value it finds:

1. Person_age_text_color

2. Person_text_color

3. age_text_color

4. text_color

Note that the classname can be the name of a base class, searched in the method resolution order (MRO) for the
item’s class. So for example, if the item were a direct instance of Employee, which is a subclass of Person, then
the Person_age_text_color attribute would apply to that item (as long as there were no Employee_age_text_color
attribute).

The Tabular Editor User Interface

Figure 53 shows an example of a tabular editor on Microsoft Windows, displaying information about source files in
the Traits package. This example includes a column that contains an image for files that meet certain conditions.

1.9. Advanced Trait Editors 73

TraitsUI 4 User Manual, Release 6.0.0

Fig. 1.49: Figure 53: Tabular editor on MS Windows

Depending on how the tabular editor is configured, certain keyboard interactions may be available. For some interac-
tions, you must specify that the corresponding operation is allowed by including the operation name in the operations
list parameter of TabularEditor().

• Up arrow: Selects the row above the currently selected row.

• Down arrow: Selects the row below the currently selected row.

• Page down: Appends a new item to the end of the list (‘append’ operation).

• Left arrow: Moves the currently selected row up one line (‘move’ operation).

• Right arrow: Moves the currently selected row down one line (‘move’ operation).

• Backspace, Delete: Deletes from the list all items in the current selection (‘delete’ operation).

• Enter, Escape: Initiates editing on the current selection (‘edit’ operation).

• Insert:: Inserts a new item before the current selection (‘insert’ operation).

The ‘append’, ‘move’, ‘edit’, and ‘insert’ operations can occur only when a single item is selected. The ‘delete’
operation works for one or more items selected.

Depending on how the editor and adapter are specified, drag and drop operations may be available. If the user selects
multiple items and drags one of them, all selected items are included in the drag operation. If the user drags a non-
selected item, only that item is dragged.

The editor supports both “drag-move” and “drag-copy” semantics. A drag-move operation means that the dragged
items are sent to the target and are removed from the list displayed in the editor. A drag-copy operation means that the
dragged items are sent to the target, but are not deleted from the list data.

1.9.7 TreeEditor()

Suitable for Instance

Default for (none)

Required parameters nodes (required except for shared editors; see Editing Objects)

Optional parameters auto_open, editable, editor, hide_root, icon_size, lines_mode, on_dclick,
on_select, orientation, selected, shared_editor, show_icons

74 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

TreeEditor() generates a hierarchical tree control, consisting of nodes. It is useful for cases where objects contain lists
of other objects.

The tree control is displayed in one pane of the editor, and a user interface for the selected object is displayed in
the other pane. The layout orientation of the tree and the object editor is determined by the orientation parameter of
TreeEditor(), which can be ‘horizontal’ or ‘vertical’.

You must specify the types of nodes that can appear in the tree using the nodes parameter, which must be a list of
instances of TreeNode (or of subclasses of TreeNode).

Fig. 1.50: Figure 54: Tree editor

The following example shows the code that produces the editor shown in Figure 54.

Example 18: Code for example tree editor

tree_editor.py -- Example of a tree editor

from traits.api \
import HasTraits, Str, Regex, List, Instance

from traitsui.api \
import TreeEditor, TreeNode, View, Item, VSplit, \

HGroup, Handler, Group
from traitsui.menu \

import Menu, Action, Separator
from traitsui.wx.tree_editor \

import NewAction, CopyAction, CutAction, \
PasteAction, DeleteAction, RenameAction

DATA CLASSES

1.9. Advanced Trait Editors 75

TraitsUI 4 User Manual, Release 6.0.0

class Employee (HasTraits):
name = Str('<unknown>')
title = Str
phone = Regex(regex = r'\d\d\d-\d\d\d\d')

def default_title (self):
self.title = 'Senior Engineer'

class Department (HasTraits):
name = Str('<unknown>')
employees = List(Employee)

class Company (HasTraits):
name = Str('<unknown>')
departments = List(Department)
employees = List(Employee)

class Owner (HasTraits):
name = Str('<unknown>')
company = Instance(Company)

INSTANCES

jason = Employee(
name = 'Jason',
title = 'Engineer',
phone = '536-1057')

mike = Employee(
name = 'Mike',
title = 'Sr. Marketing Analyst',
phone = '536-1057')

dave = Employee(
name = 'Dave',
title = 'Sr. Engineer',
phone = '536-1057')

susan = Employee(
name = 'Susan',
title = 'Engineer',
phone = '536-1057')

betty = Employee(
name = 'Betty',
title = 'Marketing Analyst')

owner = Owner(
name = 'wile',
company = Company(

name = 'Acme Labs, Inc.',
departments = [

Department(
name = 'Marketing',
employees = [mike, betty]

),

76 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Department(
name = 'Engineering',
employees = [dave, susan, jason]

)
],
employees = [dave, susan, mike, betty, jason]

)
)

View for objects that aren't edited
no_view = View()

Actions used by tree editor context menu

def_title_action = Action(name='Default title',
action = 'object.default')

dept_action = Action(
name='Department',
action='handler.employee_department(editor,object)')

View used by tree editor
employee_view = View(

VSplit(
HGroup('3', 'name'),
HGroup('9', 'title'),
HGroup('phone'),
id = 'vsplit'),

id = 'traits.doc.example.treeeditor',
dock = 'vertical')

class TreeHandler (Handler):

def employee_department (self, editor, object):
dept = editor.get_parent(object)
print '%s works in the %s department.' %\

(object.name, dept.name)

Tree editor
tree_editor = TreeEditor(

nodes = [
TreeNode(node_for = [Company],

auto_open = True,
children = '',
label = 'name',
view = View(Group('name',

orientation='vertical',
show_left=True))),

TreeNode(node_for = [Company],
auto_open = True,
children = 'departments',
label = '=Departments',
view = no_view,
add = [Department]),

TreeNode(node_for = [Company],
auto_open = True,
children = 'employees',
label = '=Employees',

1.9. Advanced Trait Editors 77

TraitsUI 4 User Manual, Release 6.0.0

view = no_view,
add = [Employee]),

TreeNode(node_for = [Department],
auto_open = True,
children = 'employees',
label = 'name',
menu = Menu(NewAction,

Separator(),
DeleteAction,
Separator(),
RenameAction,
Separator(),
CopyAction,
CutAction,
PasteAction),

view = View(Group ('name',
orientation='vertical',
show_left=True)),

add = [Employee]),
TreeNode(node_for = [Employee],

auto_open = True,
label = 'name',
menu=Menu(NewAction,

Separator(),
def_title_action,
dept_action,
Separator(),
CopyAction,
CutAction,
PasteAction,
Separator(),
DeleteAction,
Separator(),
RenameAction),

view = employee_view)
]

)

The main view
view = View(

Group(
Item(

name = 'company',
id = 'company',
editor = tree_editor,
resizable = True),

orientation = 'vertical',
show_labels = True,
show_left = True,),

title = 'Company Structure',
id = \
'traitsui.tests.tree_editor_test',

dock = 'horizontal',
drop_class = HasTraits,
handler = TreeHandler(),
buttons = ['Undo', 'OK', 'Cancel'],
resizable = True,
width = .3,

78 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

height = .3)

if __name__ == '__main__':
owner.configure_traits(view = view)

Defining Nodes

For details on the attributes of the TreeNode class, refer to the Traits API Reference.

You must specify the classes whose instances the node type applies to. Use the node_for attribute of TreeNode to
specify a list of classes; often, this list contains only one class. You can have more than one node type that applies to
a particular class; in this case, each object of that class is represented by multiple nodes, one for each applicable node
type. In Figure 54, one Company object is represented by the nodes labeled “Acme Labs, Inc.”, “Departments”, and
“Employees”.

A Node Type without Children

To define a node type without children, set the children attribute of TreeNode to the empty string. In Example 16, the
following lines define the node type for the node that displays the company name, with no children:

TreeNode(node_for = [Company],
auto_open = True,
children = '',
label = 'name',
view = View(Group('name',

orientation='vertical',
show_left=True))),

A Node Type with Children

To define a node type that has children, set the children attribute of TreeNode to the (extended) name of a trait on
the object that it is a node for; the named trait contains a list of the node’s children. In Example 16, the following
lines define the node type for the node that contains the departments of a company. The node type is for instances of
Company, and ‘departments’ is a trait attribute of Company.

TreeNode(node_for = [Company],
auto_open = True,
children = 'departments',
label = '=Departments',
view = no_view,
add = [Department]),

Setting the Label of a Tree Node

The label attribute of Tree Node can work in either of two ways: as a trait attribute name, or as a literal string.

If the value is a simple string, it is interpreted as the extended trait name of an attribute on the object that the node is
for, whose value is used as the label. This approach is used in the code snippet in A Node Type without Children.

If the value is a string that begins with an equals sign (‘=’), the rest of the string is used as the literal label. This
approach is used in the code snippet in A Node Type with Children.

1.9. Advanced Trait Editors 79

TraitsUI 4 User Manual, Release 6.0.0

You can also specify a callable to format the label of the node, using the formatter attribute of TreeNode.

Defining Operations on Nodes

You can use various attributes of TreeNode to define operations or behavior of nodes.

Shortcut Menus on Nodes

Use the menu attribute of TreeNode to define a shortcut menu that opens when the user right-clicks on a node. The
value is a TraitsUI or PyFace menu containing Action objects for the menu commands. In Example 16, the following
lines define the node type for employees, including a shortcut menu for employee nodes:

TreeNode(node_for = [Department],
auto_open = True,
children = 'employees',
label = 'name',
menu = Menu(NewAction,

Separator(),
DeleteAction,
Separator(),
RenameAction,
Separator(),
CopyAction,
CutAction,
PasteAction),

view = View(Group ('name',
orientation='vertical',
show_left=True)),

add = [Employee]),

Allowing the Hierarchy to Be Modified

If a node contains children, you can allow objects to be added to its set of children, through operations such as dragging
and dropping, copying and pasting, or creating new objects. Two attributes control these operations: add and move.
Both are lists of classes. The add attribute contains classes that can be added by any means, including creation. The
code snippet in the preceding section includes an example of the add attribute. The move attribute contains classes
that can be dragged and dropped, but not created. The move attribute need not be specified if all classes that can be
moved can also be created (and therefore are specified in the add value).

Note: The add attribute alone is not enough to create objects.

Specifying the add attribute makes it possible for objects of the specified classes to be created, but by itself, it does
not provide a way for the user to do so. In the code snippet in the preceding section (Shortcut Menus on Nodes),
‘NewAction’ in the Menu constructor call defines a New > Employee menu item that creates Employee objects.

In the example tree editor, users can create new employees using the New > Employee shortcut menu item, and they
can drag an employee node and drop it on a department node. The corresponding object becomes a member of the
appropriate list.

You can specify the label that appears on the New submenu when adding a particular type of object, using the name
attribute of TreeNode. Note that you set this attribute on the tree node type that will be added by the menu item, not
the node type that contains the menu item. For example, to change New > Employee to New > Worker, set name =

80 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

'Worker' on the tree node whose node_for value contains Employee. If this attribute is not set, the class name is
used.

You can determine whether a node or its children can be copied, renamed, or deleted, by setting the following attributes
on TreeNode:

Attribute If True, the . . . can be. . .
copy object’s children copied.
delete object’s children deleted.
delete_me object deleted.
rename object’s children renamed.
rename_me object renamed.

All of these attributes default to True. As with add, you must also define actions to perform these operations.

Behavior on Nodes

As the user clicks in the tree, you may wish to enable certain program behavior.

You can use the selected parameter to specify the name of a trait attribute on the current context object to synchronize
with the user’s current selection. For example, you can enable or disable menu items or toolbar icons depending on
which node is selected. The synchronization is two-way; you can set the attribute referenced by selected to force the
tree to select a particular node.

The on_select and on_dclick parameters are callables to invoke when the user selects or double-clicks a node, respec-
tively.

Expanding and Collapsing Nodes

You can control some aspects of expanding and collapsing of nodes in the tree.

The integer auto_open parameter of TreeEditor() determines how many levels are expanded below the root node, when
the tree is first displayed. For example, if auto_open is 2, then two levels below the root node are displayed (whether
or not the root node itself is displayed, which is determined by hide_root).

The Boolean auto_open attribute of TreeNode determines whether nodes of that type are expanded when they are
displayed (at any time, not just on initial display of the tree). For example, suppose that a tree editor has auto_open
setting of 2, and contains a tree node at level 3 whose auto_open attribute is True. The nodes at level 3 are not
displayed initially, but when the user expands a level 2 node, displaying the level 3 node, that’s nodes children are
automatically displayed also. Similarly, the number of levels of nodes initially displayed can be greater than specified
by the tree editor’s auto_open setting, if some of the nodes have auto_open set to True.

If the auto_close attribute of TreeNode is set to True, then when a node is expanded, any siblings of that node are
automatically closed. In other words, only one node of this type can be expanded at a time.

Editing Objects

One pane of the tree editor displays a user interface for editing the object that is selected in the tree. You can specify
a View to use for each node type using the view attribute of TreeNode. If you do not specify a view, then the default
view for the object is displayed. To suppress the editor pane, set the editable parameter of TreeEditor() to False; in this
case, the objects represented by the nodes can still be modified by other means, such as shortcut menu commands.

1.9. Advanced Trait Editors 81

TraitsUI 4 User Manual, Release 6.0.0

You can define multiple tree editors that share a single editor pane. Each tree editor has its own tree pane. Each time
the user selects a different node in any of the sharing tree controls, the editor pane updates to display the user interface
for the selected object. To establish this relationship, do the following:

1. Call TreeEditor() with the shared_editor parameter set to True, without defining any tree nodes. The object this
call returns defines the shared editor pane. For example:

my_shared_editor_pane = TreeEditor(shared_editor=True)

2. For each editor that uses the shared editor pane:

• Set the shared_editor parameter of TreeEditor() to True.

• Set the editor parameter of TreeEditor() to the object returned in Step 1.

For example:

shared_tree_1 = TreeEditor(shared_editor = True,
editor = my_shared_editor_pane,
nodes = [TreeNode(# ...

)
]

)
shared_tree_2 = TreeEditor(shared_editor = True,

editor = my_shared_editor_pane,
nodes = [TreeNode(# ...

)
]

)

Defining the Format

Several parameters to TreeEditor() affect the formatting of the tree control:

• show_icons: If True (the default), icons are displayed for the nodes in the tree.

• icon_size: A two-integer tuple indicating the size of the icons for the nodes.

• lines_mode: Determines whether lines are displayed between related nodes. The valid values are ‘on’, ‘off’, and
‘appearance’ (the default). When set to ‘appearance’, lines are displayed except on Posix-based platforms.

• hide_root: If True, the root node in the hierarchy is not displayed. If this parameter were specified as True in
Example 16, the node in Figure 54 that is labeled “Acme Labs, Inc.” would not appear.

Additionally, several attributes of TreeNode also affect the display of the tree:

• icon_path: A directory path to search for icon files. This path can be relative to the module it is used in.

• icon_item: The icon for a leaf node.

• icon_open: The icon for a node with children whose children are displayed.

• icon_group: The icon for a node with children whose children are not displayed.

The wxWidgets implementation automatically detects the bitmap format of the icon.

1.9.8 ArrayViewEditor()

Suitable for 2-D Array, 2-D CArray

Default for (none)

82 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Optional parameters format, show_index, titles, transpose

ArrayViewEditor() generates a tabular display for an array. It is suitable for use with large arrays, which do not work
well with the editors generated by ArrayEditor(). All styles of the editor have the same appearance.

Fig. 1.51: Figure 55: Array view editor

1.9.9 DataFrameEditor()

Suitable for Pandas DataFrames

Default for (none)

Optional parameters formats, show_index, show_titles, columns, fonts, selected, selected_row, se-
lectable, activated, activated_row, clicked, dclicked, right_clicked, right_dclicked, column_clicked,
column_right_clicked, editable, operations

DataFrameEditor() generates a tabular display for a DataFrame. It is suitable for use with large DataFrames. All styles
of the editor have the same appearance. Many of the optional parameters are identical to those of the TabularEditor().

The following have special meaning for the DataFrameEditor():

• formats: either a %-style formatting string for all entries, or a dictonary mapping DataFrame columns to for-
matting strings.

• show_index: whether or not to show the index as a column in the table.

• show_titles: whether or not to show column headers on the table.

• fonts: either a font for all entries, or a mapping of column id to fonts.

1.9.10 HistoryEditor()

Suitable for string traits

Default for (none)

Optional parameters entries

1.9. Advanced Trait Editors 83

TraitsUI 4 User Manual, Release 6.0.0

HistoryEditor() generates a combo box, which allows the user to either enter a text string or select a value from a list
of previously-entered values. The same control is used for all editor styles. The entries parameter determines how
many entries are preserved in the history list. This type of control is used as part of the simple style of file editor; see
FileEditor().

1.9.11 ImageEditor()

Suitable for (any)

Default for (none)

Optional parameters image, scale, preserve_aspect_ratio, allow_upscaling, allow_clipping

ImageEditor() generates a read-only display of an image. The image to be displayed is determined by the image
parameter, or by the value of the trait attribute being edited, if image is not specified. In either case, the value must be
a PyFace ImageResource (pyface.api.ImageResource), or a string that can be converted to one. If image is specified,
then the type and value of the trait attribute being edited are irrelevant and are ignored.

For the Qt backend scale, preserve_aspect_ratio, allow_upscaling, and allow_clipping control whether the image
should be scaled or not, and how to perform that scaling.

1.10 “Extra” Trait Editor Factories

The traitsui.wx package defines a few editor factories that are specific to the wxWidgets toolkit, some of which are
also specific to the Microsoft Windows platform. These editor factories are not necessarily implemented for other GUI
toolkits or other operating system platforms.

1.10.1 AnimatedGIFEditor()

Suitable for File

Default for (none)

Optional parameters playing

AnimatedGIFEditor() generates a display of the contents of an animated GIF image file. The Boolean playing param-
eter determines whether the image is animated or static.

1.10.2 FlashEditor()

Suitable for string traits, Enum(string values)

Default for (none)

FlashEditor() generates a display of an Adobe Flash Video file, using an ActiveX control (if one is installed on the
system). This factory is available only on Microsoft Windows platforms. The attribute being edited must have a value
whose text representation is the name or URL of a Flash video file. If the value is a Unicode string, it must contain
only characters that are valid for filenames or URLs.

1.10.3 IEHTMLEditor()

Suitable for string traits, Enum(string values)

Default for (none)

84 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Optional parameters back, forward, home, html, page_loaded, refresh, search, status, stop, title

IEHTMLEditor() generates a display of a web page, using Microsoft Internet Explorer (IE) via ActiveX to render the
page. This factory is available only on Microsoft Windows platforms. The attribute being edited must have value
whose text representation is a URL. If the value is a Unicode string, it must contain only characters that are valid for
URLs.

The back, forward, home, refresh, search and stop parameters are extended names of event attributes that represent the
user clicking on the corresponding buttons in the standard IE interface. The IE buttons are not displayed by the editor;
you must create buttons separately in the View, if you want the user to be able to actually click buttons.

The html, page_loaded, status, and title parameters are the extended names of string attributes, which the editor
updates with values based on its own state. You can display these attributes elsewhere in the View.

• html: The current page content as HTML (as would be displayed by the View > Source command in IE).

• page_loaded: The URL of the currently displayed page; this may be different from the URL represented by the
attribute being edited.

• status: The text that would appear in the IE status bar.

• title: The title of the currently displayed page.

1.10.4 LEDEditor()

Suitable for numeric traits

Default for (none)

Optional parameters alignment, format_str

LEDEditor() generates a display that resembles a “digital” display using light-emitting diodes. All styles of this editor
are the same, and are read-only.

The alignment parameter can be ‘left’, ‘center’, or ‘right’ to indicate how the value should be aligned within the
display. The default is right-alignment.

Fig. 1.52: Figure 56: LED Editor with right alignment

1.11 Advanced Editor Adapters

A number of trait editors provide a way for code to adapt objects to the expected API for the editor, and this can be
used by Traits UI code to provide strongly customized views of the data. The editors which provide this facility are
the ListStrEditor, the TabularEditor and the TreeEditor. In this section we will look more closely at each of these and
discuss how they can be customized as needed.

1.11.1 The TreeEditor and TreeNodes

The TreeEditor internally associates with each node in the tree a pair consisting of the object that is associated
with the node and something that to adheres to the TreeNode interface. The TreeNode interface is not explicitly

1.11. Advanced Editor Adapters 85

TraitsUI 4 User Manual, Release 6.0.0

laid out, but it corresponds to the “overridable” public methods of the TreeNode class, such as get_label() and
get_children().

This means that the tree editor expects one of the following three things to be offered as values associated with a node,
such as the value of the root node trait or values that might be returned by the get_children() method:

• an explicit pair of the object and a TreeNode instance for that object

• an object that has is_node_for() return True for at least one of the factory’s nodes items.

• an object that provides or can be adapted to the ITreeNode interface using Traits adaptation.

There is a crucial distinction between the way that TreeNode and ITreeNode work. TreeNode is generic—it
is designed to work with certain types of objects, but doesn’t hold references to those objects—instead they rely on
the TreeEditor to keep track of the association between the objects and the TreeNode to use with that object.
ITreeNode, on the other hand, is an interface and uses adapters associated with individual objects rather than types
of objects. This means that ITreeNode-based approaches are generally more heavyweight: you end up with at least
one additional class instance for each displayed node (and most likely two additional instances) vs. a tuple. On the
other hand, because ITreeNode uses Traits adaptation, you can extend the set of classes that are supported by adding
more ITreeNode adapters, for example via Envisage extension points.

Specializing TreeNode Behaviour

In general using TreeNode s works well when you have a hierarchy of HasTraits objects, which is probably the
most common situation. And while the TreeNode is fairly generic, there are times when you want to override the
default behaviour of one or more aspects of the object. In this case it may be that the best way to do this is to simply
subclass TreeNode and adjust it to behave the way that you want.

For example, the default behaviour of the TreeNode is to show one of 3 different icons depending on whether the
node has children or not and whether it has been expanded. But you might want to display a different icon based
on some attribute of the object being viewed, and that would require a new TreeNode subclass to override that
behaviour.

Concretely, if we had different document types, identified by file extension:

class DocumentTreeNode(TreeNode):

icons = Dict({
'.npy': ImageResource('document-table'),
'.txt': ImageResource('document-text'),
'.rst': ImageResource('document-text'),
'.png': ImageResource('document-image'),
'.jpg': ImageResource('document-image'),

})

def get_icon(self, object, is_expanded):
icon = self.icons.get(object.extension, self.icon_item)
return icon

This TreeNode subclass can now be used with any compatible class to give a richer set of icons.

Common use cases for this approach would include:

• more customized icon display, as above.

• having the label built from multiple traits, which requires overriding get_label(),
when_label_changed() and possibly set_label().

• having the children come from multiple traits, which requires overriding allows_children(),
get_children(), when_children_replaced(), when_children_changed() and possibly

86 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

append_child(), insert_child() and delete_child() (although there may be better ways to
handle this situation by using multiple TreeNodes for the class).

• being more selective about what objects to use for the node. For example, requiring not only that an object be of
a certain class, but that it also have an attribute with a cetain value. This requires overriding is_node_for().

• customization of menus on a per-object basis, or other UI behaviour like drag and drop, selection and clicking.

This has the advantage that most of the time the behaviour that you want is built into the TreeNode class, and you
only need to change the things which are not to your requirements.

Where TreeNode classes are generally weak is when the object you are trying to view is not a HasTraits instance,
or where you don’t know the full set of classes that you need to display in the tree when writing the UI. You can
overcome these obstacles by careful subclassing, taking particular care to avoid things like trying to set traits listeners
on non-HasTraits objects or adapting the object to a desired interface before using it. But in these cases it may be
better to use a different approach.

ITreeNodes and ITreeNodeAdapters

These are most useful for situations where you don’t know the full set of classes that may be displayed in a tree. This
is a common situation when writing complex applications using libraries like Envisage that allow new functionality to
be added to the application via plug-ins (potentially during run-time!). It is also useful in situations where the model
object that is being viewed isn’t a HasTraits object, or where you may need some UI state in the node that doesn’t
belong on the underlying model object (for example, caching quantities which are expensive to compute).

Before using this approach, you should make sure that you understand the way that traits adaptation works.

To make writing code which satisfies the ITreeNode interface easier, there is an ITreeNodeAdapter class which
provides basic functionality and which can be subclassed to provide an adapter class for your own nodes. This adapter
is minimalistic and not complete. You will at a minimum need to override the get_label() method, and probably
many others to get the desired behaviour. Since the ITreeNodeAdapter is an Adapter subclass, the object
being adapted is available as the adaptee attribute. This means that the methods might look similar to the ones for
TreeNode, but they don’t expect to be passed the object as a parameter.

Once you have written the ITreeNodeAdapter subclass, you have to register the adapter with traits using the
Traits regsiter_factory() function. You are not required to use ITreeNodeAdapter if you don’t wish to.
You can instead write a class which @provides the ITreeNode interface directly, or create an alternative adapter
class.

Note that currently the tree editor infrastructure uses the deprecated Traits adapts() class advisor and the default
traits adapter registry which means that you can’t have mulitple different ITreeNode adapters for a given object
to use in different editors within a given application. This is likely to be fixed in a future release of TraitsUI. In
the mean-time you can work around this somewhat by having the trait being edited and/or the get_children()
method return pre-adapted objects, rather than relying on traits adaptation machinery to find and adapt the object.

ObjectTreeNodes and TreeNodeObjects

Another approach to adapting objects, particularly non-HasTraits objects is used by the ValueEditor, but is
available for general tree editors to use as well. In this approach you write one or more TreeNodeObject classes
that wrap the model objects that you want to display, and then use instances of the TreeNodeObject classes within
the tree editor, both as the root node being edited, and the objects returned by the tno_get_children() methods.
To fit these with the expected TreeNode classes used by the TreeEditor, there is the ObjectTreeNode class
which knows how to call the appropriate TreeNodeObjects and which can be given a list of TreeNodeObject
classes that it understands.

For example, it is possible to represent a tree structure in Python using nested dictionaries with strings as keys. A
TreeNodeObject for such a structure might look like this:

1.11. Advanced Editor Adapters 87

TraitsUI 4 User Manual, Release 6.0.0

class DictNode(TreeNodeObject):

#: The parent of the node
parent = Instance('DictNode')

#: The label for the node
label = Str

#: The value for this node
value = Any

def tno_get_label(self, node):
return self.label

def tno_allows_children(self, node):
return isinstance(self.value, dict)

def tno_has_children(self, node):
return bool(self.value)

def tno_get_children(self, node):
return [DictNode(parent=self, label=key, value=value)

for key, value in sorted(self.value.items())]

and so forth. There is additional work if you want to be able to modify the structure of the tree, for example. In
addition to defining the TreeNodeObject subclass, you also need provide the nodes for the editor something like
this:

dict_tree_editor = TreeEditor(
editable=False,
nodes=[

ObjectTreeNode(
node_for=[DictNode],
rename=False,
rename_me=False,
copy=False,
delete=False,
delete_me=False,

)
]

)

The ObjectTreeNode is a TreeNode subclass that delegates operations to the TreeNodeObject, but the de-
fault TreeNodeObject methods try to behave in the same way as the base TreeNode, so you can specify global
behaviour on the ObjectTreeNode in the same way that you can for a TreeNode.

The last piece to make this approach work is that the root node when editing has to be a DictNode instance, so
you may need to provide a property that wraps the raw tree structure in a DictNode to get started: unlike the
ITreeNodeAdapter approaches this wrapping not automatically provided for you.

Examples

There are a number of examples of use of the TreeEditor in the TraitsUI demos:

• TreeEditor

• Adapted TreeEditor

88 Chapter 1. TraitsUI 6.0 User Manual

https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/TreeEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Adapted_tree_editor_demo.py

TraitsUI 4 User Manual, Release 6.0.0

• HDF5 Tree

1.11.2 The TabularAdapter Class

The power and flexibility of the tabular editor is mostly a result of the TabularAdapter class, which is the base
class from which all tabular editor adapters must be derived.

The TabularEditor object interfaces between the underlying toolkit widget and your program, while the
TabularAdapter object associated with the editor interfaces between the editor and your data.

The design of the TabularAdapter base class is such that it tries to make simple cases simple and complex cases
possible. How it accomplishes this is what we’ll be discussing in the following sections.

The TabularAdapter columns Trait

First up is the TabularAdapter columns trait, which is a list of values which define, in presentation order, the
set of columns to be displayed by the associated TabularEditor.

Each entry in the columns list can have one of two forms:

• string

• (string, id)

where string is the user interface name of the column (which will appear in the table column header) and id is
any value that you want to use to identify that column to your adapter. Normally this value is either a trait name or
an integer index value, but it can be any value you want. If only string is specified, then id is the index of the
string within columns.

For example, say you want to display a table containing a list of tuples, each of which has three values: a name, an
age, and a weight. You could then use the following value for the columns trait:

columns = ['Name', 'Age', 'Weight']

By default, the id values (also referred to in later sections as the column ids) for the columns will be the corresponding
tuple index values.

Say instead that you have a list of Person objects, with name, age and weight traits that you want to display in
the table. Then you could use the following columns value instead:

columns = [('Name', 'name'),
('Age', 'age'),
('Weight', 'weight')]

In this case, the column ids are the names of the traits you want to display in each column.

Note that it is possible to dynamically modify the contents of the columns trait while the TabularEditor is
active. The TabularEditor will automatically modify the table to show the new set of defined columns.

The Core TabularAdapter Interface

In this section, we’ll describe the core interface to the TabularAdapter class. This is the actual interface used by
the TabularEditor to access your data and display attributes. In the most complex data representation cases, these
are the methods that you must override in order to have the greatest control over what the editor sees and does.

However, the base TabularAdapter class provides default implementations for all of these methods. In subsequent
sections, we’ll look at how these default implementations provide simple means of customizing the adapter to your
needs. But for now, let’s start by covering the details of the core interface itself.

1.11. Advanced Editor Adapters 89

https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/HDF5_tree_demo.py

TraitsUI 4 User Manual, Release 6.0.0

To reduce the amount of repetition, we’ll use the following definitions in all of the method argument lists that follow
in this section:

object The object whose trait is being edited by the TabularEditor.

trait The name of the trait the TabularEditor is editing.

row The row index (starting with 0) of a table item.

column The column index (starting with 0) of a table column.

The adapter interface consists of a number of methods which can be divided into two main categories: those which are
sensitive to the type of a particular table item, and those which are not. We’ll begin with the methods that are sensitive
to an item’s type:

get_alignment() Returns the alignment style to use for a specified column.

The possible values that can be returned are: 'left', 'center' or 'right'. All table items share the
same alignment for a specified column.

get_width() Returns the width to use for a specified column.

If the value is <= 0, the column will have a default width, which is the same as specifying a width of 0.1.

If the value is > 1.0, it is converted to an integer and the result is the width of the column in pixels. This is
referred to as a fixed width column.

If the value is a float such that 0.0 < value <= 1.0, it is treated as the unnormalized fraction of the available
space that is to be assigned to the column. What this means requires a little explanation.

To arrive at the size in pixels of the column at any given time, the editor adds together all of the unnormalized
fraction values returned for all columns in the table to arrive at a total value. Each unnormalized fraction is then
divided by the total to create a normalized fraction. Each column is then assigned an amount of space in pixels
equal to the maximum of 30 or its normalized fraction multiplied by the available space. The available space
is defined as the actual width of the table minus the width of all fixed width columns. Note that this calculation
is performed each time the table is resized in the user interface, thus allowing columns of this type to increase
or decrease their width dynamically, while leaving fixed width columns unchanged.

get_can_edit() Returns whether the user can edit a specified row.

A True result indicates that the value can be edited, while a False result indicates that it cannot.

get_drag() Returns the value to be dragged for a specified row.

A result of None means that the item cannot be dragged. Note that the value returned does not have to be the
actual row item. It can be any value that you want to drag in its place. In particular, if you want the drag target
to receive a copy of the row item, you should return a copy or clone of the item in its place.

Also note that if multiple items are being dragged, and this method returns None for any item in the set, no drag
operation is performed.

get_can_drop() Returns whether the specified value can be dropped on the specified row.

A value of True means the value can be dropped; and a value of False indicates that it cannot be dropped.

The result is used to provide the user positive or negative drag feedback while dragging items over the table.
value will always be a single value, even if multiple items are being dragged. The editor handles multiple drag
items by making a separate call to get_can_drop() for each item being dragged.

get_dropped() Returns how to handle a specified value being dropped on a specified row.

The possible return values are:

• 'before': Insert the specified value before the dropped on item.

• 'after': Insert the specified value after the dropped on item.

90 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

Note there is no result indicating do not drop since you will have already indicated that the object can be
dropped by the result returned from a previous call to get_can_drop().

get_font() Returns the font to use for displaying a specified row or cell.

A result of None means use the default font; otherwise a toolkit font object should be returned. Note that all
columns for the specified table row will use the font value returned.

get_text_color() Returns the text color to use for a specified row or cell.

A result of Nonemeans use the default text color; otherwise a toolkit-compatible color should be returned. Note
that all columns for the specified table row will use the text color value returned.

get_bg_color() Returns the background color to use for a specified row or cell.

A result of None means use the default background color; otherwise a toolkit-compatible color should be
returned. Note that all columns for the specified table row will use the background color value returned.

get_image() Returns the image to display for a specified cell.

A result of None means no image will be displayed in the specified table cell. Otherwise the result should either
be the name of the image, or an ImageResource object specifying the image to display.

A name is allowed in the case where the image is specified in the TabularEditor images trait. In that
case, the name should be the same as the string specified in the ImageResource constructor.

get_format() Returns the Python formatting string to apply to the specified cell.

The resulting of formatting with this string will be used as the text to display it in the table.

The return can be any Python string containing exactly one old-style Python formatting sequence, such as '%.
4f' or '(%5.2f)'.

get_text() Returns a string containing the text to display for a specified cell.

If the underlying data representation for a specified item is not a string, then it is your responsibility to convert
it to one before returning it as the result.

set_text() Sets the value for the specified cell.

This method is called when the user completes an editing operation on a table cell.

The string specified by text is the value that the user has entered in the table cell. If the underlying data does
not store the value as text, it is your responsibility to convert text to the correct representation used.

get_tooltip() Returns a string containing the tooltip to display for a specified cell.

You should return the empty string if you do not wish to display a tooltip.

The following are the remaining adapter methods, which are not sensitive to the type of item or column data:

get_item() Returns the specified row item.

The value returned should be the value that exists (or logically exists) at the specified row in your data. If your
data is not really a list or array, then you can just use row as an integer key or token that can be used to retrieve a
corresponding item. The value of row will always be in the range: 0 <= row < len(object, trait) (i.e.
the result returned by the adapter len() method).

len() Returns the number of row items in the specified object.trait.

The result should be an integer greater than or equal to 0.

delete() Deletes the specified row item.

This method is only called if the delete operation is specified in the TabularEditor operation trait, and
the user requests that the item be deleted from the table.

1.11. Advanced Editor Adapters 91

TraitsUI 4 User Manual, Release 6.0.0

The adapter can still choose not to delete the specified item if desired, although that may prove confusing to the
user.

insert() Inserts value at the specified object.trait[row] index.

The specified value can be:

• An item being moved from one location in the data to another.

• A new item created by a previous call to get_default_value().

• An item the adapter previously approved via a call to get_can_drop().

The adapter can still choose not to insert the item into the data, although that may prove confusing to the user.

get_default_value() Returns a new default value for the specified object.trait list.

This method is called when insert or append operations are allowed and the user requests that a new item be
added to the table. The result should be a new instance of whatever underlying representation is being used for
table items.

Creating a Custom TabularAdapter

Having just taken a look at the core TabularAdapter interface, you might now be thinking that there are an
awful lot of methods that need to be specified to get an adapter up and running. But as we mentioned earlier
TabularAdapter is not an abstract base class. It is a concrete base class with implementations for each of the
methods in its interface. And the implementations are written in such a way that you will hopefully hardly ever need
to override them.

In this section, we’ll explain the general implementation style used by these methods, and how you can take advantage
of them in creating your own adapters.

One of the things you probably noticed as you read through the core adapter interface section is that most of the
methods have names of the form: get_xxx or set_xxx, which is similar to the familiar getter/setter pattern used
when defining trait properties. The adapter interface is purposely defined this way so that it can expose and leverage a
simple set of design rules.

The design rules are followed consistently in the implementations of all of the adapter methods described in the first
section of the core adapter interface, so that once you understand how they work, you can easily apply the design
pattern to all items in that section. Then, only in the case where the design rules will not work for your application
will you ever have to override any of those TabularAdapter base class method implementations.

So the first thing to understand is that if an adapter method name has the form: get_xxx or set_xxx it
really is dealing with some kind of trait called xxx, or which contains xxx in its name. For example, the
:py:meth‘~TabularAdapter.get_alignment‘ method retrieves the value of some alignment trait defined on the
adapter. In the following discussion we’ll simply refer to an attribute name generically as attribute, but you will
need to replace it by an actual attribute name (e.g. alignment) in your adapter.

The next thing to keep in mind is that the adapter interface is designed to easily deal with items that are not all of the
same type. As we just said, the design rules apply to all adapter methods in the first group, which were defined as
methods which are sensitive to an item’s type. Item type sensitivity plays an important part in the design rules, as we
will see shortly.

With this in mind, we now describe the simple design rules used by the first group of methods in the
TabularAdapter class:

• When getting or setting an adapter attribute, the method first retrieves the underlying item for the specified data
row. The item, and type (i.e. class) of the item, are then used in the next rule.

• The method gets or sets the first trait it finds on the adapter that matches one of the following names:

– classname_columnid_attribute

92 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

– classsname_attribute

– columnid_attribute

– attribute

where:

– classname is the name of the class of the item found in the first step, or one of its base class names,
searched in the order defined by the mro (method resolution order) for the item’s class.

– columnid is the column id specified by the developer in the adapter’s column trait for the specified table
column.

– attribute is the attribute name as described previously (e.g. alignment).

Note that this last rule always finds a matching trait, since the TabularAdapter base class provides traits that
match the simple attribute form for all attributes these rules apply to. Some of these are simple traits, while others are
properties. We’ll describe the behavior of all these default traits shortly.

The basic idea is that rather than override the first group of core adapter methods, you simply define one or more
simple traits or trait properties on your TabularAdapter subclass that provide or accept the specified information.

All of the adapter methods in the first group provide a number of arguments, such as object, trait, row and
column. In order to define a trait property, which cannot be passed this information directly, the adapter always
stores the arguments and values it computes in the following adapter traits, where they can be easily accessed by a trait
getter or setter method:

• row: The table row being accessed.

• column: The column id of the table column being accessed (not its index).

• item: The data item for the specified table row (i.e. the item determined in the first step described above).

• value‘: In the case of a set_xxx method, the value to be set; otherwise it is None.

As mentioned previously, the TabularAdapter class provides trait definitions for all of the attributes these rules
apply to. You can either use the default values as they are, override the default, set a new value, or completely replace
the trait definition in a subclass. A description of the default trait implementation for each attribute is as follows:

default_value = Any('') The default value for a new row.

The default value is the empty string, but you will normally need to assign a different (default) value.

format = Str('%s') The default Python formatting string for a column item.

The default value is '%s' which will simply convert the column item to a displayable string value.

text = Property The text to display for the column item.

The implementation of the property checks the type of the column’s column id:

• If it is an integer, it returns format % item[column_id].

• Otherwise, it returns format % item.column_id.

Note that format refers to the value returned by a call to get_format() for the current column item.

text_color = Property The text color for a row item.

The property implementation checks to see if the current table row is even or odd, and based on the result returns
the value of the even_text_color or odd_text_color trait if the value is not None, and the value of
the default_text_color trait if it is. The definition of these additional traits are as follows:

• odd_text_color = Color(None)

• even_text_color = Color(None)

1.11. Advanced Editor Adapters 93

TraitsUI 4 User Manual, Release 6.0.0

• default_text_color = Color(None)

Remember that a None value means use the default text color.

bg_color = Property The background color for a row item.

The property implementation checks to see if the current table row is even or odd, and based on the result
returns the value of the even_bg_color or odd_bg_color trait if the value is not None, and the value of
the default_bg_color trait if it is. The definition of these additional traits are as follows:

• odd_bg_color = Color(None)

• even_bg_color = Color(None)

• default_bg_color = Color(None)

Remember that a None value means use the default background color.

alignment = Enum('left', 'center', 'right') The alignment to use for a specified column.

The default value is 'left'.

width = Float(-1) The width of a specified column.

The default value is -1, which means a dynamically sized column with an unnormalized fractional value of 0.1.

can_edit = Bool(True) Specifies whether the text value of the current item can be edited.

The default value is True, which means that the user can edit the value.

drag = Property A property which returns the value to be dragged for a specified row item.

The property implementation simply returns the current row item.

can_drop = Bool(False) Specifies whether the specified value be dropped on the current item.

The default value is False, meaning that the value cannot be dropped.

dropped = Enum('after', 'before') Specifies where a dropped item should be placed in the table relative
to the item it is dropped on.

The default value is 'after'.

font = Font The font to use for the current item.

The default value is the standard default Traits font value.

image = Str(None) The name of the default image to use for a column.

The default value is None, which means that no image will be displayed for the column.

tooltip = Str The tooltip information for a column item.

The default value is the empty string, which means no tooltip information will be displayed for the column.

The preceding discussion applies to all of the methods defined in the first group of TabularAdapter interface
methods. However, the design rules do not apply to the remaining five adapter methods, although they all provide a
useful default implementation:

get_item() The default implementation assumes the trait defined by object.trait is a sequence and attempts
to return the value at index row. If an error occurs, it returns None instead. This definition should work
correctly for lists, tuples and arrays, or any other object that is indexable, but will have to be overridden for all
other cases.

Note that this method is the one called in the first design rule described previously to retrieve the item at the
current table row.

94 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

len() Again, the default implementation assumes the trait defined by object.trait is a sequence and attempts
to return the result of calling len(object.trait). It will need to be overridden for any type of data which
for which len() will not work.

delete() The default implementation assumes the trait defined by object.trait is a mutable sequence and
attempts to perform a del object.trait[row] operation.

insert() The default implementation assumes the trait defined by object.trait is a mutable sequence and
attempts to perform an object.trait[row:row] = [value] operation.

get_default_value() The default implementation simply returns the value of the adapter’s default_value
trait.

Examples

There are a number of examples of use of the TabularAdapter in the TraitsUI demos:

• TabularEditor

• TabularEditor (auto-update)

• NumPy array TabularEditor

1.11.3 The ListStrAdapter Class

Although the ListStrEditor editor is frequently used, as might be expected, with lists of strings, it also pro-
vides facilities to edit lists of other object types that can be adapted to produce strings for display and editing via
ListStrAdapter subclasses

The design of the ListStrAdapter base class follows the same design as the TabularAdapter, simplified
by the fact that there are only rows, no columns. However, the names and intents of the various methods and
traits are the same as the TabularAdapter, and so the approaches discussed in the previous section work for
the ListStrAdapter as well.

1.12 Tips, Tricks and Gotchas

1.12.1 Getting and Setting Model View Elements

For some applications, it can be necessary to retrieve or manipulate the View objects associated with a given model
object. The HasTraits class defines two methods for this purpose: trait_views() and trait_view().

trait_views()

The trait_views() method, when called without arguments, returns a list containing the names of all Views defined
in the object’s class. For example, if sam is an object of type SimpleEmployee3 (from Example 6), the method call
sam.trait_views() returns the list ['all_view', 'traits_view'].

Alternatively, a call to trait_views(view_element_type) returns a list of all named instances of class
view_element_type defined in the object’s class. The possible values of view_element_type are:

• View

• Group

• Item

1.12. Tips, Tricks and Gotchas 95

https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Tabular_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Auto_update_TabularEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/NumPy_array_tabular_editor_demo.py

TraitsUI 4 User Manual, Release 6.0.0

• ViewElement

• ViewSubElement

Thus calling trait_views(View) is identical to calling trait_views(). Note that the call sam.
trait_views(Group) returns an empty list, even though both of the Views defined in SimpleEmployee contain
Groups. This is because only named elements are returned by the method.

Group and Item are both subclasses of ViewSubElement, while ViewSubElement and View are both subclasses of
ViewElement. Thus, a call to trait_views(ViewSubElement) returns a list of named Items and Groups, while
trait_views(ViewElement) returns a list of named Items, Groups and Views.

trait_view()

The trait_view() method is used for three distinct purposes:

• To retrieve the default View associated with an object

• To retrieve a particular named ViewElement (i.e., Item, Group or View)

• To define a new named ViewElement

For example:

• obj.trait_view() returns the default View associated with object obj. For example, sam.
trait_view() returns the View object called traits_view. Note that unlike trait_views(), trait_view()
returns the View itself, not its name.

• obj.trait_view('my_view') returns the view element named my_view (or None if my_view is not
defined).

• obj.trait_view('my_group', Group('a', 'b')) defines a Group with the name my_group.
Note that although this Group can be retrieved using trait_view(), its name does not appear in the list
returned by traits_view(Group). This is because my_group is associated with obj itself, rather than
with its class.

1.13 Appendix I: Glossary of Terms

attribute An element of data that is associated with all instances of a given class, and is named at the class level.19 In
most cases, attributes are stored and assigned separately for each instance (for the exception, see class attribute).
Synonyms include “data member” and “instance variable”.

class attribute An element of data that is associated with a class, and is named at the class level. There is only one
value for a class attribute, associated with the class itself. In contrast, for an instance attribute, there is a value
associated with every instance of a class.

command button A button on a window that globally controls the window. Examples include OK, Cancel, Apply,
Revert, and Help.

controller The element of the MVC (“model-view-controller”) design pattern that manages the transfer of informa-
tion between the data model and the view used to observe and edit it.

dialog box A secondary window whose purpose is for a user to specify additional information when entering a
command.

editor A user interface component for editing the value of a trait attribute. Each type of trait has a default editor, but
you can override this selection with one of a number of editor factories provided by the TraitsUI package. In
some cases an editor can include multiple widgets, e.g., a slider and a text box for a Range trait attribute.

19 This is not always the case in Python, where attributes can be added to individual objects.

96 Chapter 1. TraitsUI 6.0 User Manual

TraitsUI 4 User Manual, Release 6.0.0

editor factory An instance of the Traits class EditorFactory. Editor factories generate the actual widgets used in a
user interface. You can use an editor factory without knowing what the underlying GUI toolkit is.

factory An object used to produce other objects at run time without necessarily assigning them to named variables
or attributes. A single factory is often parameterized to produce instances of different classes as needed.

Group An object that specifies an ordered set of Items and other Groups for display in a TraitsUI View. Various
display options can be specified by means of attributes of this class, including a border, a group label, and the
orientation of elements within the Group. An instance of the TraitsUI class Group.

Handler A TraitsUI object that implements GUI logic (data manipulation and dynamic window behavior) for one
or more user interface windows. A Handler instance fills the role of controller in the MVC design pattern. An
instance of the TraitsUI class Handler.

HasTraits A class defined in the Traits package to specify objects whose attributes are typed. That is, any attribute
of a HasTraits subclass can be a trait attribute.

instance A concrete entity belonging to an abstract category such as a class. In object-oriented programming termi-
nology, an entity with allocated memory storage whose structure and behavior are defined by the class to which
it belongs. Often called an object.

Item A non-subdividable element of a Traits user interface specification (View), usually specifying the display op-
tions to be used for a single trait attribute. An instance of the TraitsUI class Item.

live A term used to describe a window that is linked directly to the underlying model data, so that changes to data in
the interface are reflected immediately in the model. A window that is not live displays and manipulates a copy
of the model data until the user confirms any changes.

livemodal A term used to describe a window that is both live and modal.

MVC A design pattern for interactive software applications. The initials stand for “Model-View-Controller”, the
three distinct entities prescribed for designing such applications. (See the glossary entries for model, view, and
controller.)

modal A term used to describe a window that causes the remainder of the application to be suspended, so that the
user can interact only with the window until it is closed.

model A component of the MVC design pattern for interactive software applications. The model consists of the set
of classes and objects that define the underlying data of the application, as well as any internal (i.e., non-GUI-
related) methods or functions on that data.

nonmodal A term used to describe a window that is neither live nor modal.

object Synonym for instance.

panel A user interface region similar to a window except that it is embedded in a larger window rather than existing
independently.

predefined trait type Any trait type that is built into the Traits package.

subpanel A variation on a panel that ignores (i.e., does not display) any command buttons.

trait A term used loosely to refer to either a trait type or a trait attribute.

trait attribute An attribute whose type is specified and checked by means of the Traits package.

trait type A type-checked data type, either built into or implemented by means of the Traits package.

Traits An open source package engineered by Enthought, Inc. to perform explicit typing in Python.

TraitsUI A high-level user interface toolkit designed to be used with the Traits package.

View A template object for constructing a GUI window or panel for editing a set of traits. The structure of a View is
defined by one or more Group or Item objects; a number of attributes are defined for specifying display options

1.13. Appendix I: Glossary of Terms 97

TraitsUI 4 User Manual, Release 6.0.0

including height and width, menu bar (if any), and the set of buttons (if any) that are displayed. A member of
the TraitsUI class View.

view A component of the MVC design pattern for interactive software applications. The view component encom-
passes the visual aspect of the application, as opposed to the underlying data (the model) and the application’s
behavior (the controller).

ViewElement A View, Group or Item object. The ViewElement class is the parent of all three of these subclasses.

widget An interactive element in a graphical user interface, e.g., a scrollbar, button, pull-down menu or text box.

wizard An interface composed of a series of dialog box windows, usually used to guide a user through an interactive
task such as software installation.

wx A shorthand term for the low-level GUI toolkit on which TraitsUI and PyFace are currently based (wxWidgets)
and its Python wrapper (wxPython).

1.14 Appendix II: Editor Factories for Predefined Traits

Predefined traits that are not listed in this table use TextEditor() by default, and have no other appropriate editor
factories.

Trait Default Editor Factory Other Possible Editor Factories
Any TextEditor EnumEditor, ImageEnumEditor, ValueEditor
Array ArrayEditor (for 2-D arrays)
Bool BooleanEditor ThemedCheckboxEditor
Button ButtonEditor
CArray ArrayEditor (for 2-D arrays)
CBool BooleanEditor
CComplex TextEditor
CFloat, CInt, CLong TextEditor LEDEditor
Code CodeEditor
Color ColorEditor
Complex TextEditor
CStr, CUnicode TextEditor (multi_line=True) CodeEditor, HTMLEditor
Dict TextEditor ValueEditor
Directory DirectoryEditor
Enum EnumEditor ImageEnumEditor
Event (none) ButtonEditor, ToolbarButtonEditor
File FileEditor AnimatedGIFEditor
Float TextEditor LEDEditor
Font FontEditor
HTML HTMLEditor
Instance InstanceEditor TreeEditor, DropEditor, DNDEditor, ValueEditor
List TableEditor for lists of HasTraits objects; ListEditor for all other lists. CSVListEditor, CheckListEditor, SetEditor, ValueEditor, ThemedVerticalNotebookEditor
Long TextEditor LEDEditor
Password TextEditor(password=True)
PythonValue ShellEditor
Range RangeEditor ThemedSliderEditor
Regex TextEditor CodeEditor
RGBColor RGBColorEditor
Str TextEditor(multi_line=True) CodeEditor, HTMLEditor

Continued on next page

98 Chapter 1. TraitsUI 6.0 User Manual

http://wxwidgets.org
http://www.wxpython.org

TraitsUI 4 User Manual, Release 6.0.0

Table 1.1 – continued from previous page
Trait Default Editor Factory Other Possible Editor Factories
String TextEditor CodeEditor, ThemedTextEditor
This InstanceEditor
ToolbarButton ButtonEditor
Tuple TupleEditor
UIDebugger ButtonEditor (button calls the UIDebugEditor factory)
Unicode TextEditor(multi_line=True) HTMLEditor
WeakRef InstanceEditor

1.14. Appendix II: Editor Factories for Predefined Traits 99

TraitsUI 4 User Manual, Release 6.0.0

100 Chapter 1. TraitsUI 6.0 User Manual

CHAPTER 2

TraitsUI 6.0 API Reference

This document contains the auto-generated API reference documentation for TraitsUI. For user documentation, please
read the TraitsUI User Manual

2.1 traitsui package

2.1.1 Subpackages

traitsui.editors package

Submodules

traitsui.editors.api module

traitsui.editors.array_editor module

traitsui.editors.boolean_editor module

Defines the Boolean editor factory for all traits toolkit backends.

traitsui.editors.boolean_editor.BooleanEditor
alias of ToolkitEditorFactory

class traitsui.editors.boolean_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.text_editor.ToolkitEditorFactory

Editor factory for Boolean editors.

101

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.button_editor module

Defines the button editor factory for all traits toolkit backends.

traitsui.editors.button_editor.ButtonEditor
alias of ToolkitEditorFactory

class traitsui.editors.button_editor.ToolkitEditorFactory(**traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for buttons.

traitsui.editors.check_list_editor module

Defines the editor factory for multi-selection enumerations, for all traits toolkit backends.

traitsui.editors.check_list_editor.CheckListEditor
alias of ToolkitEditorFactory

class traitsui.editors.check_list_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorWithListFactory

Editor factory for checklists.

traitsui.editors.code_editor module

Defines the code editor factory for all traits toolkit backends, useful for tools such as debuggers.

traitsui.editors.code_editor.CodeEditor
alias of ToolkitEditorFactory

class traitsui.editors.code_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for code editors.

traitsui.editors.color_editor module

Defines the color editor factory for the all traits toolkit backends.

traitsui.editors.color_editor.ColorEditor(*args, **traits)
Returns an instance of the toolkit-specific editor factory declared in traitsui.<toolkit>.color_editor. If such
an editor factory cannot be located, an instance of the abstract ToolkitEditorFactory declared in trait-
sui.editors.color_editor is returned.

Parameters **traits (*args,) – arguments and keywords to be passed on to the editor fac-
tory’s constructor.

class traitsui.editors.color_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for color editors.

102 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.compound_editor module

Defines the compound editor factory for all traits toolkit backends.

traitsui.editors.compound_editor.CompoundEditor
alias of ToolkitEditorFactory

class traitsui.editors.compound_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for compound editors.

traitsui.editors.csv_list_editor module

This modules defines CSVListEditor.

A CSVListEditor provides an editor for lists of simple data types. It allows the user to edit the list in a text field, using
commas (or optionally some other character) to separate the elements.

class traitsui.editors.csv_list_editor.CSVListEditor(*args, **traits)
Bases: traitsui.editors.text_editor.ToolkitEditorFactory

A text editor for a List.

This editor provides a single line of input text of comma separated values. (Actually, the default separator is a
comma, but this can changed.) The editor can only be used with List traits whose inner trait is one of Int, Float,
Str, Enum, or Range.

The ‘simple’, ‘text’, ‘custom’ and readonly styles are based on TextEditor. The ‘readonly’ style provides the
same formatting in the text field as the other editors, but the user cannot change the value.

Like other Traits editors, the background of the text field will turn red if the user enters an incorrectly formatted
list or if the values do not match the type of the inner trait. This validation only occurs while editing the text
field. If, for example, the inner trait is Range(low=’lower’, high=’upper’), a change in ‘upper’ will not trigger
the validation code of the editor.

The editor removes whitespace of entered items with strip(), so for Str types, the editor should not be used if
whitespace at the beginning or end of the string must be preserved.

Parameters

• sep (str or None, optional) – The separator of the values in the list. If None,
each contiguous sequence of whitespace is a separator. Default is ‘,’.

• ignore_trailing_sep (bool, optional) – If this is False, a line containing a
trailing separator is invalid. Default is True.

• auto_set (bool) – If True, then every keystroke sets the value of the trait.

• enter_set (bool) – If True, the user input sets the value when the Enter key is pressed.

Example

The following will display a window containing a single input field. Entering, say, ‘0, .5, 1’ in this field will
result in the list x = [0.0, 0.5, 1.0].

custom_editor(ui, object, name, description, parent)
Generates an editor using the “custom” style.

2.1. traitsui package 103

TraitsUI 4 User Manual, Release 6.0.0

readonly_editor(ui, object, name, description, parent)
Generates an “editor” that is read-only.

simple_editor(ui, object, name, description, parent)
Generates an editor using the “simple” style.

text_editor(ui, object, name, description, parent)
Generates an editor using the “text” style.

traitsui.editors.custom_editor module

Defines the editor factory used to wrap a non-Traits based custom control.

traitsui.editors.custom_editor.CustomEditor
alias of ToolkitEditorFactory

class traitsui.editors.custom_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

Editor factory for custom editors.

traitsui.editors.date_editor module

A Traits UI editor that wraps a WX calendar panel.

class traitsui.editors.date_editor.DateEditor(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for date/time editors.

traitsui.editors.default_override module

Editor factory that overrides certain attributes of the default editor.

For example, the default editor for Range(low=0, high=1500) has ‘1500’ as the upper label. To change it to ‘Max’
instead, use

my_range = Range(low=0, high=1500, editor=DefaultOverride(high_label=’Max’))

Alternatively, the override can also be specified in the view:

View(Item(‘my_range’, editor=DefaultOverride(high_label=’Max’))

class traitsui.editors.default_override.DefaultOverride(*args, **overrides)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for selectively overriding certain parameters of the default editor.

custom_editor(ui, object, name, description, parent)

readonly_editor(ui, object, name, description, parent)

simple_editor(ui, object, name, description, parent)

text_editor(ui, object, name, description, parent)

104 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.directory_editor module

Defines the directory editor factory for all traits toolkit backends.

traitsui.editors.directory_editor.DirectoryEditor
alias of ToolkitEditorFactory

class traitsui.editors.directory_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.file_editor.ToolkitEditorFactory

Editor factory for directory editors.

traitsui.editors.dnd_editor module

Defines the editor factory for a drag-and-drop editor. A drag-and-drop editor represents its value as a simple image
which, depending upon the editor style, can be a drag source only, a drop target only, or both a drag source and a drop
target.

traitsui.editors.dnd_editor.DNDEditor
alias of ToolkitEditorFactory

class traitsui.editors.dnd_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for drag-and-drop editors.

traitsui.editors.drop_editor module

Defines a drop editor factory for all traits toolkit backends. A drop target editor handles drag and drop operations as a
drop target.

traitsui.editors.drop_editor.DropEditor
alias of ToolkitEditorFactory

class traitsui.editors.drop_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.text_editor.ToolkitEditorFactory

Editor factory for drop editors.

traitsui.editors.enum_editor module

Defines the editor factory for single-selection enumerations, for all traits user interface toolkits.

traitsui.editors.enum_editor.EnumEditor
alias of ToolkitEditorFactory

class traitsui.editors.enum_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorWithListFactory

Editor factory for enumeration editors.

traitsui.editors.file_editor module

Defines the file editor factory for all traits toolkit backends.

2.1. traitsui package 105

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.file_editor.FileEditor
alias of ToolkitEditorFactory

class traitsui.editors.file_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.text_editor.ToolkitEditorFactory

Editor factory for file editors.

traitsui.editors.font_editor module

Defines the font editor factory for all traits user interface toolkits.

traitsui.editors.font_editor.FontEditor(*args, **traits)
Returns an instance of the toolkit-specific editor factory declared in traitsui.<toolkit>.font_editor. If such
an editor factory cannot be located, an instance of the abstract ToolkitEditorFactory declared in trait-
sui.editors.font_editor is returned.

Parameters **traits (*args,) – arguments and keywords to be passed on to the editor fac-
tory’s constructor.

class traitsui.editors.font_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for font editors.

traitsui.editors.history_editor module

Defines a text editor which displays a text field and maintains a history of previously entered values.

class traitsui.editors.history_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

traitsui.editors.history_editor.history_editor(*args, **traits)

traitsui.editors.html_editor module

Defines the HTML editor factory. HTML editors interpret and display HTML-formatted text, but do not modify it.

class traitsui.editors.html_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

Editor factory for HTML editors.

indent(line)
Calculates the amount of white space at the beginning of a line.

parse_block(lines, i)
Parses a code block.

parse_list(lines, i)
Parses a list.

parse_text(text)
Parses the contents of a formatted text string into the corresponding HTML.

traitsui.editors.html_editor.html_editor(*args, **traits)

106 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.image_editor module

Traits UI ‘display only’ image editor.

class traitsui.editors.image_editor.ImageEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

traitsui.editors.image_enum_editor module

Defines the image enumeration editor factory for all traits user interface toolkits.

traitsui.editors.image_enum_editor.ImageEnumEditor
alias of ToolkitEditorFactory

class traitsui.editors.image_enum_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.enum_editor.ToolkitEditorFactory

Editor factory for image enumeration editors.

init()
Performs any initialization needed after all constructor traits have been set.

traitsui.editors.instance_editor module

Defines the instance editor factory for all traits user interface toolkits.

traitsui.editors.instance_editor.InstanceEditor
alias of ToolkitEditorFactory

class traitsui.editors.instance_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for instance editors.

traitsui.editors.key_binding_editor module

Defines the key binding editor for use with the KeyBinding class. This is a specialized editor used to associate a
particular key with a control (i.e., the key binding editor).

traitsui.editors.key_binding_editor.key_binding_editor(*args, **traits)

traitsui.editors.list_editor module

Defines the list editor factory for the traits user interface toolkits..

traitsui.editors.list_editor.ListEditor
alias of ToolkitEditorFactory

class traitsui.editors.list_editor.ListItemProxy(object, name, index, trait, value)
Bases: traits.has_traits.HasTraits

class traitsui.editors.list_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for list editors.

2.1. traitsui package 107

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.list_str_editor module

Traits UI editor factory for editing lists of strings.

class traitsui.editors.list_str_editor.ListStrEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

Editor factory for list of string editors.

traitsui.editors.null_editor module

Defines a completely empty editor, intended to be used as a spacer.

traitsui.editors.null_editor.null_editor(*args, **traits)

traitsui.editors.popup_editor module

class traitsui.editors.popup_editor.PopupEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

traitsui.editors.progress_editor module

Defines the progress editor factory for all traits toolkit backends,

traitsui.editors.progress_editor.ProgressEditor
alias of ToolkitEditorFactory

class traitsui.editors.progress_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for code editors.

traitsui.editors.range_editor module

Defines the range editor factory for all traits user interface toolkits.

traitsui.editors.range_editor.RangeEditor
alias of ToolkitEditorFactory

class traitsui.editors.range_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for range editors.

custom_editor(ui, object, name, description, parent)
Generates an editor using the “custom” style. Overridden to set the values of the _low_value, _high_value
and is_float traits.

init(handler=None)
Performs any initialization needed after all constructor traits have been set.

simple_editor(ui, object, name, description, parent)
Generates an editor using the “simple” style. Overridden to set the values of the _low_value, _high_value
and is_float traits.

108 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.rgb_color_editor module

Defines a subclass of the base color editor factory, for colors that are represented as tuples of the form (red, green,
blue), where red, green and blue are floats in the range from 0.0 to 1.0.

traitsui.editors.rgb_color_editor.RGBColorEditor(*args, **traits)
Returns an instance of the toolkit-specific editor factory declared in traitsui.<toolkit>.rgb_color_editor. If
such an editor factory cannot be located, an instance of the abstract ToolkitEditorFactory declared in trait-
sui.editors.rgb_color_editor is returned.

Parameters **traits (*args,) – arguments and keywords to be passed on to the editor fac-
tory’s constructor.

class traitsui.editors.rgb_color_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.color_editor.ToolkitEditorFactory

Factory for editors for RGB colors.

traitsui.editors.scrubber_editor module

Editor factory for scrubber-based integer or float value editors.

class traitsui.editors.scrubber_editor.ScrubberEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

traitsui.editors.search_editor module

A single line text widget that supports functionality common to native search widgets.

class traitsui.editors.search_editor.SearchEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

A single line text widget that supports functionality common to native search widgets.

traitsui.editors.set_editor module

Defines the set editor factory for all traits user interface toolkits.

traitsui.editors.set_editor.SetEditor
alias of ToolkitEditorFactory

class traitsui.editors.set_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorWithListFactory

Editor factory for editors for sets.

traitsui.editors.shell_editor module

Editor that displays an interactive Python shell.

traitsui.editors.shell_editor.ShellEditor
alias of ToolkitEditorFactory

class traitsui.editors.shell_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

2.1. traitsui package 109

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.styled_date_editor module

class traitsui.editors.styled_date_editor.CellFormat(**args)
Bases: object

Encapsulates some common visual attributes to set on the cells of a calendar widget. All attributes default to
None, which means that they will not override the existing values of the calendar widget.

bgcolor = None

bold = None

fgcolor = None

italics = None

underline = None

traitsui.editors.styled_date_editor.StyledDateEditor
alias of ToolkitEditorFactory

class traitsui.editors.styled_date_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editors.date_editor.DateEditor

A DateEditor that can show sets of dates in different styles.

traitsui.editors.table_editor module

Defines the table editor factory for all traits user interface toolkits.

class traitsui.editors.table_editor.BaseTableEditor
Bases: object

Base class for toolkit-specific editors.

add_to_menu(menu_item)
Adds a menu item to the menu bar being constructed.

add_to_toolbar(toolbar_item)
Adds a toolbar item to the toolbar being constructed.

can_add_to_menu(action)
Returns whether the action should be defined in the user interface.

can_add_to_toolbar(action)
Returns whether the toolbar action should be defined in the user interface.

eval_when(condition, object, trait)
Evaluates a condition within a defined context and sets a specified object trait based on the result, which is
assumed to be a Boolean.

perform(action, action_event=None)
Performs the action described by a specified Action object.

set_menu_context(selection, object, column)
Call before creating a context menu for a cell, then set self as the controller for the menu.

class traitsui.editors.table_editor.ReversedList(list)
Bases: object

A list whose order is the reverse of its input.

110 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

index(value)
Returns the index of the first occurrence of the specified value in the list.

insert(index, value)
Inserts a value at a specified index in the list.

traitsui.editors.table_editor.TableEditor
alias of ToolkitEditorFactory

class traitsui.editors.table_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for table editors.

readonly_editor(ui, object, name, description, parent)
Generates an “editor” that is read-only. Overridden to set the value of the editable trait to False before
generating the editor.

traitsui.editors.tabular_editor module

A traits UI editor for editing tabular data (arrays, list of tuples, lists of objects, etc).

class traitsui.editors.tabular_editor.TabularEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

Editor factory for tabular editors.

traitsui.editors.text_editor module

Defines the text editor factory for all traits toolkit backends.

traitsui.editors.text_editor.TextEditor
alias of ToolkitEditorFactory

class traitsui.editors.text_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for text editors.

traitsui.editors.time_editor module

A Traits UI editor that wraps a WX timer control.

class traitsui.editors.time_editor.TimeEditor(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for time editors. Generates _TimeEditor()s.

traitsui.editors.title_editor module

Defines the title editor factory for all traits toolkit backends.

traitsui.editors.title_editor.TitleEditor
alias of ToolkitEditorFactory

2.1. traitsui package 111

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.editors.title_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for Title editors.

traitsui.editors.tree_editor module

Defines the tree editor factory for all traits user interface toolkits.

class traitsui.editors.tree_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for tree editors.

activated = Str
The optional extended trait name of the trait that should be assigned a node object when a tree node is
activated, by double-clicking or pressing the Enter key when a node has focus (Note: if you want to
receive repeated activated events on the same node, make sure the trait is defined as an Event):

alternating_row_colors = Bool(False)
Whether to alternate row colors or not.

auto_open = Int
Number of tree levels (down from the root) that should be automatically opened

click = Str
The optional extended trait name of the trait that should be assigned a node object when a tree node is
clicked on (Note: If you want to receive repeated clicks on the same node, make sure the trait is defined as
an Event):

column_headers = List(Str)
The column header labels if any.

dclick = Str
The optional extended trait name of the trait that should be assigned a node object when a tree node is
double-clicked on (Note: if you want to receive repeated double-clicks on the same node, make sure the
trait is defined as an Event):

dock_theme = Instance(DockWindowTheme)
The DockWindow graphical theme

editable = Bool(True)
Are the individual nodes editable?

editor = Instance(EditorFactory)
Reference to a shared object editor

expands_on_dclick = Bool(True)
Whether or not to expand on a double-click.

hide_root = Bool(False)
Hide the tree root node?

icon_size = IconSize
Size of the tree node icons

lines_mode = Enum('appearance', 'on', 'off')
Mode for lines connecting tree nodes

• ‘appearance’: Show lines only when they look good.

• ‘on’: Always show lines.

112 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

• ‘off’: Don’t show lines.

multi_nodes = Dict
Mapping from TreeNode tuples to MultiTreeNodes

nodes = List(TreeNode)
Supported TreeNode objects

on_activated = Any
Called when a node is activated

on_click = Any
Called when a node is clicked

on_dclick = Any
Called when a node is double-clicked

on_hover = Any
Call when the mouse hovers over a node

on_select = Any
Called when a node is selected

orientation = Orientation
Layout orientation of the tree and the editor

refresh = Str
The optional extended trait name of the trait event that is fired when the application wishes the currently
visible portion of the tree widget to repaint itself.

selected = Str
The optional extended trait name of the trait to synchronize with the editor’s current selection:

selection_mode = Enum('single', 'extended')
Selection mode.

shared_editor = Bool(False)
Is the editor shared across trees?

show_icons = Bool(True)
Show icons for tree nodes?

vertical_padding = Int(0)
Any extra vertical padding to add.

veto = Str
The optional extended trait name of the trait event that is fired whenever the application wishes to veto
a tree action in progress (e.g. double-clicking a non-leaf tree node normally opens or closes the node,
but if you are handling the double-click event in your program, you may wish to veto the open or close
operation). Be sure to fire the veto event in the event handler triggered by the operation (e.g. the ‘dclick’
event handler.

word_wrap = Bool(False)
Whether the labels should be wrapped around, if not an ellipsis is shown This works only in the qt backend
and if there is only one column in tree

traitsui.editors.tree_editor.TreeEditor
Define the TreeEditor class.

alias of ToolkitEditorFactory

2.1. traitsui package 113

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.tuple_editor module

Defines the tuple editor factory for all traits user interface toolkits.

class traitsui.editors.tuple_editor.SimpleEditor(parent, **traits)
Bases: traitsui.editor.Editor

Simple style of editor for tuples.

The editor displays an editor for each of the fields in the tuple, based on the type of each field.

get_error_control()
Returns the editor’s control for indicating error status.

init(parent)
Finishes initializing the editor by creating the underlying toolkit widget.

update_editor()
Updates the editor when the object trait changes external to the editor.

class traitsui.editors.tuple_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for tuple editors.

traitsui.editors.tuple_editor.TupleEditor
alias of ToolkitEditorFactory

class traitsui.editors.tuple_editor.TupleStructure(editor)
Bases: traits.has_traits.HasTraits

Creates a view containing items for each field in a tuple.

traitsui.editors.value_editor module

Defines the tree-based Python value editor and the value editor factory.

class traitsui.editors.value_editor.ToolkitEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Editor factory for tree-based value editors.

traitsui.editors.value_editor.ValueEditor
alias of ToolkitEditorFactory

114 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits

TraitsUI 4 User Manual, Release 6.0.0

Module contents

traitsui.extras package

Submodules

traitsui.extras.api module

traitsui.extras.checkbox_column module

traitsui.extras.demo module

traitsui.extras.edit_column module

Defines the table column descriptor used for editing the object represented by the row

class traitsui.extras.edit_column.EditColumn(**traits)
Bases: traitsui.table_column.ObjectColumn

get_cell_color(object)
Returns the cell background color for the column for a specified object.

is_editable(object)
Returns whether the column is editable for a specified object.

traitsui.extras.progress_column module

traitsui.extras.saving module

Provides a lightweight framework that removes some of the drudge work involved with implementing user-friendly
saving behavior in a Traits UI application.

class traitsui.extras.saving.CanSaveMixin
Bases: traits.has_traits.HasTraits

A mixin-class for objects that wish to support GUI saving via a SaveHandler. It is the responsiblity of the child
class to manage its dirty flag, which describes whether its information has changed since its last save.

save()
Saves the object to the path specified by its ‘filepath’ trait. This method should also reset the dirty flag on
this object.

validate()
Returns whether the information in the object is valid to be saved in tuple form. The first item is the
validation state (boolean) and the second item is the message to display if the object did not validate.

By default, an object always validates.

class traitsui.extras.saving.SaveHandler
Bases: traitsui.handler.Handler

A Handler that facilates adding saving to a Traits UI application.

close(info, is_ok)
Called when the user requests to close the interface. Returns a boolean indicating whether the window
should be allowed to close.

2.1. traitsui package 115

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits

TraitsUI 4 User Manual, Release 6.0.0

closed(info, is_ok)
Called after the window is destroyed. Makes sure that the autosave timer is stopped.

exit(info)
Closes the UI unless a save prompt is cancelled. Provided for convenience to be used with a Menu action.

init(info)
Set the default save object (the object being handled). Also, perform a questionable hack by which we
remove the handled object from the keybinding’s controllers. This means that a keybinding to ‘save’ only
calls this object, not the object being edited as well. (For reasons unclear, the KeyBinding handler API is
radically different from the Action API, which is the reason that this problem exists. Keybindings are a UI
concept–they should not call the model by default.)

promptForSave(info, cancel=True)
Prompts the user to save the object, if appropriate. Returns whether the user canceled the action that
invoked this prompt.

save(info)
Saves the object to its current filepath. If this is not specified, opens a dialog to select this path. Returns
whether the save actually occurred.

saveAs(info)
Saves the object to a new path, and sets this as the ‘filepath’ on the object. Returns whether the save
actually occurred.

Module contents

traitsui.image package

Submodules

traitsui.image.image module

Module contents

traitsui.null package

Submodules

traitsui.null.color_trait module

Trait definition for a null-based (i.e., no UI) color.

traitsui.null.color_trait.convert_to_color(object, name, value)
Converts a number into a wxColour object.

traitsui.null.color_trait.get_color_editor(*args, **traits)

traitsui.null.font_trait module

Trait definition for a null-based (i.e., no UI) font.

class traitsui.null.font_trait.TraitFont
Bases: traits.trait_handlers.TraitHandler

116 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/trait_handlers.html#traits.trait_handlers.TraitHandler

TraitsUI 4 User Manual, Release 6.0.0

Ensures that values assigned to a trait attribute are valid font descriptor strings; the value actually assigned is the
corresponding canonical font descriptor string.

info()

validate(object, name, value)
Validates that the value is a valid font descriptor string.

traitsui.null.font_trait.get_font_editor(*args, **traits)

traitsui.null.rgb_color_trait module

Trait definitions for an RGB-based color, which is a tuple of the form (red, green, blue), where red, green and blue are
floats in the range from 0.0 to 1.0.

traitsui.null.rgb_color_trait.convert_to_color(object, name, value)
Converts a tuple or an integer to an RGB color value, or raises a TraitError if that is not possible.

traitsui.null.rgb_color_trait.get_rgb_color_editor(*args, **traits)

traitsui.null.rgb_color_trait.range_check(value)
Checks that value can be converted to a value in the range 0.0 to 1.0.

If so, it returns the floating point value; otherwise, it raises a TraitError.

traitsui.null.toolkit module

Defines the concrete implementations of the traits Toolkit interface for the ‘null’ (do nothing) user interface toolkit.

class traitsui.null.toolkit.GUIToolkit(package, toolkit, *packages, **traits)
Bases: traitsui.toolkit.Toolkit

color_trait(*args, **traits)

constants(*args, **traits)

font_trait(*args, **traits)

kiva_font_trait(*args, **traits)

rgb_color_trait(*args, **traits)

Module contents

Define the concrete implementations of the traits Toolkit interface for the ‘null’ (do nothing) user interface toolkit.
This toolkit is provided to handle situations where no recognized traits-compatible UI toolkit is installed, but users
still want to use traits for non-UI related tasks.

2.1. traitsui package 117

TraitsUI 4 User Manual, Release 6.0.0

traitsui.tests package

Subpackages

traitsui.tests.editors package

Submodules

traitsui.tests.editors.test_button_editor module

traitsui.tests.editors.test_code_editor module

traitsui.tests.editors.test_csv_editor module

traitsui.tests.editors.test_default_override module

traitsui.tests.editors.test_instance_editor module

traitsui.tests.editors.test_liststr_editor module

Test case for ListStrEditor and ListStrAdapter

class traitsui.tests.editors.test_liststr_editor.TraitObject
Bases: traits.has_traits.HasTraits

traitsui.tests.editors.test_liststr_editor.test_list_str_adapter_length()
Test the ListStringAdapter len method

118 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits

TraitsUI 4 User Manual, Release 6.0.0

traitsui.tests.editors.test_liststr_editor_selection module

traitsui.tests.editors.test_range_editor_spinner module

traitsui.tests.editors.test_range_editor_text module

traitsui.tests.editors.test_table_editor module

traitsui.tests.editors.test_tabular_editor module

traitsui.tests.editors.test_tree_editor module

traitsui.tests.editors.test_tuple_editor module

Module contents

traitsui.tests.null_backend package

Submodules

traitsui.tests.null_backend.test_font_trait module

traitsui.tests.null_backend.test_null_toolkit module

Module contents

traitsui.tests.ui_editors package

Submodules

traitsui.tests.ui_editors.test_data_frame_editor module

Module contents

Submodules

traitsui.tests.test_actions module

traitsui.tests.test_color_column module

traitsui.tests.test_controller module

traitsui.tests.test_handler module

class traitsui.tests.test_handler.PyfaceAction
Bases: traitsui.menu.Action

2.1. traitsui package 119

TraitsUI 4 User Manual, Release 6.0.0

perform(event)

class traitsui.tests.test_handler.SampleHandler
Bases: traitsui.handler.Handler

action_handler()

apply(info)

info_action_handler(info)

revert(info)

show_help(info, control=None)

class traitsui.tests.test_handler.SampleObject
Bases: traits.has_traits.HasTraits

action_handler()

info_action_handler(info)

object_action_handler()

class traitsui.tests.test_handler.TestHandler(methodName=’runTest’)
Bases: unittest.case.TestCase

test_close_handler()

test_help_handler()

test_perform_action_handler()

test_perform_click_handler()

test_perform_info_action_handler()

test_perform_object_handler()

test_perform_pyface_action()

test_perform_traitsui_action()

test_redo_handler()

test_revert_handler()

test_undo_handler()

class traitsui.tests.test_handler.TraitsUIAction
Bases: traitsui.menu.Action

perform()

traitsui.tests.test_labels module

traitsui.tests.test_layout module

traitsui.tests.test_regression module

General regression tests for various fixed bugs.

class traitsui.tests.test_regression.Child
Bases: traits.has_traits.HasTraits

120 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.tests.test_regression.Parent
Bases: traits.has_traits.HasTraits

class traitsui.tests.test_regression.TestRegression(methodName=’runTest’)
Bases: unittest.case.TestCase

test_attribute_error()
Make sure genuine AttributeErrors raise on Editor creation.

test_editor_on_delegates_to_event()
Make sure that DelegatesTo on Events passes Editor creation.

traitsui.tests.test_shadow_group module

Tests for the ShadowGroup class.

class traitsui.tests.test_shadow_group.TestShadowGroup(methodName=’runTest’)
Bases: unittest.case.TestCase

test_creation_sets_shadow_first()

traitsui.tests.test_splitter_prefs_restored module

traitsui.tests.test_toolkit module

class traitsui.tests.test_toolkit.TestToolkit(methodName=’runTest’)
Bases: unittest.case.TestCase

test_default_toolkit()

test_nonexistent_toolkit()

test_nonstandard_toolkit()

traitsui.tests.test_toolkit.clear_toolkit(*args, **kwds)
If a toolkit has been selected, clear it, resetting on exit

traitsui.tests.test_tuple_editor module

traitsui.tests.test_ui module

traitsui.tests.test_visible_when_layout module

Module contents

traitsui.ui_editors package

Submodules

traitsui.ui_editors.array_view_editor module

Defines an ArrayViewEditor for displaying 1-d or 2-d arrays of values.

2.1. traitsui package 121

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasTraits

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.ui_editors.array_view_editor.ArrayViewAdapter
Bases: traitsui.tabular_adapter.TabularAdapter

get_item(object, trait, row)
Returns the value of the object.trait[row] item.

len(object, trait)
Returns the number of items in the specified object.trait list.

class traitsui.ui_editors.array_view_editor.ArrayViewEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

traitsui.ui_editors.data_frame_editor module

class traitsui.ui_editors.data_frame_editor.DataFrameAdapter
Bases: traitsui.tabular_adapter.TabularAdapter

Generic tabular adapter for data frames

alignment = Property(Enum('left', 'center', 'right'))
The alignment for each cell

delete(object, trait, row)
Override the base implementation to work with DataFrames

Unavoidably does a copy of the data, setting the trait with the new value.

font = Property
The font to use for each column

format = Property
The format to use for each column

get_item(object, trait, row)
Override the base implementation to work with DataFrames

This returns a dataframe with one row, rather than a series, since using a dataframe preserves dtypes.

index_alignment = Property
The alignment to use for a row index.

index_text = Property
The text to use for a row index.

insert(object, trait, row, value)
Override the base implementation to work with DataFrames

Unavoidably does a copy of the data, setting the trait with the new value.

text = Property
The text to use for a generic entry.

class traitsui.ui_editors.data_frame_editor.DataFrameEditor(*args, **traits)
Bases: traitsui.basic_editor_factory.BasicEditorFactory

Editor factory for basic data frame editor

columns = List()
Optional list of either column ID or pairs of (column title, column ID).

editable = Bool(False)
Whether or not the entries can be edited.

122 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

fonts = Either(Font, Dict, default='Courier 10')
The font for each element, or a mapping column ID to font.

formats = Either(Str, Dict, default='%s')
The format for each element, or a mapping column ID to format.

klass = Property
The editor implementation class.

show_index = Bool(True)
Should an index column be displayed.

show_titles = Bool(True)
Should column headers be displayed.

Module contents

2.1.2 Submodules

traitsui.api module

Exports the symbols defined by the traits.ui package.

traitsui.api.raise_to_debug()
When we would otherwise silently swallow an exception, call this instead to allow people to set the
TRAITS_DEBUG environment variable and get the exception.

traitsui.base_panel module

class traitsui.base_panel.BasePanel
Bases: pyface.action.action_controller.ActionController

Base class for Traits UI panels and dialog boxes.

Concrete subclasses of BasePanel are the Python-side owners of the top-level toolkit control for a UI. They also
implement the Pyface ActionController API for menu and toolbar action handling.

add_to_menu(menu_item)
Adds a menu item to the menu bar being constructed.

The bulk of the back-end work is done in Pyface. This code is simply responsible for hooking up radio
groups, checkboxes, and enabled status.

This routine is also used to add items to the toolbar, as logic and APIs are identical.

Parameters menu_item (toolkit MenuItem) – The Pyface toolkit-level item to add to
the menu.

add_to_toolbar(toolbar_item)
Adds a menu item to the menu bar being constructed.

The bulk of the back-end work is done in Pyface. This code is simply responsible for hooking up radio
groups, checkboxes, and enabled status.

This simply calls the analagous menu as logic and APIs are identical.

Parameters toolbar_item (toolkit Tool) – The Pyface toolkit-level item to add to the
toolbar.

2.1. traitsui package 123

http://docs.enthought.com/pyface/api/pyface.action.html#pyface.action.action_controller.ActionController

TraitsUI 4 User Manual, Release 6.0.0

can_add_to_menu(action)
Should the toolbar action be defined in the user interface.

This simply calls the analagous menu as logic and APIs are identical.

Parameters action (Action) – The Action to add to the toolbar.

Returns defined – Whether or not the action should be added to the menu.

Return type bool

can_add_to_toolbar(action)
Should the toolbar action be defined in the user interface.

This simply calls the analagous menu as logic and APIs are identical.

Parameters action (Action) – The Action to add to the toolbar.

Returns defined – Whether or not the action should be added to the toolbar.

Return type bool

check_button(buttons, action)
Adds action to the system buttons list for this dialog, if it is not already in the list.

coerce_button(action)
Coerces a string to an Action if necessary.

control = Any
The top-level toolkit control of the UI.

default_icon()
Return a default icon for a TraitsUI dialog.

is_button(action, name)
Returns whether a specified action button is a system button.

perform(action, event)
Dispatches the action to be handled by the handler.

Parameters

• action (Action instance) – The action to perform.

• event (ActionEvent instance) – The event that triggered the action.

Returns result – The result of the action’s perform method (usually None).

Return type any

ui = Instance('traitsui.ui.UI')
The UI instance for the view.

traitsui.basic_editor_factory module

Defines the BasicEditorFactory class, which allows creating editor factories that use the same class for creating all
editor styles.

class traitsui.basic_editor_factory.BasicEditorFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Base class for editor factories that use the same class for creating all editor styles.

124 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

traitsui.color_column module

Table column object for RGBColor traits.

class traitsui.color_column.ColorColumn
Bases: traitsui.table_column.ObjectColumn

Table column object for RGBColor traits.

get_cell_color(object)
Returns the cell background color for the column for a specified object.

get_value(object)
Gets the value of the column for a specified object.

style = 'readonly'
For display by default.

traitsui.context_value module

Defines some helper classes and traits used to define ‘bindable’ editor values.

traitsui.context_value.CV
alias of ContextValue

traitsui.context_value.CVType(type)

class traitsui.context_value.ContextValue(name)
Bases: traits.has_traits.HasPrivateTraits

Defines the name of a context value that can be bound to some editor value.

traitsui.default_dock_window_theme module

traitsui.delegating_handler module

A handler that delegates the handling of events to a set of sub-handlers.

This is typically used as the handler for dynamic views. See the traits.has_dynamic_view module.

class traitsui.delegating_handler.DelegatingHandler
Bases: traitsui.handler.Handler

A handler that delegates the handling of events to a set of sub-handlers.

closed(info, is_ok)
Handles the user interface being closed by the user.

This method is overridden here to unregister any dispatchers that were set up in the init() method.

init(info)
Initializes the controls of a user interface.

This method is called after all user interface elements have been created, but before the user interface is
displayed. Use this method to further customize the user interface before it is displayed.

This method is overridden here to delegate to sub-handlers.

Parameters info (UIInfo object) – The UIInfo object associated with the view

2.1. traitsui package 125

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

Returns initialized – A boolean, indicating whether the user interface was successfully initial-
ized. A True value indicates that the UI can be displayed; a False value indicates that the
display operation should be cancelled.

Return type bool

traitsui.dock_window_theme module

Defines the theme style information for a DockWindow and its components.

class traitsui.dock_window_theme.DockWindowTheme
Bases: traits.has_traits.HasPrivateTraits

Defines the theme style information for a DockWindow and its components.

traitsui.dock_window_theme.dock_window_theme(theme=None)

traitsui.dockable_view_element module

traitsui.editor module

Defines the abstract Editor class, which represents an editing control for an object trait in a Traits-based user interface.

class traitsui.editor.Editor(parent, **traits)
Bases: traits.has_traits.HasPrivateTraits

Represents an editing control for an object trait in a Traits-based user interface.

dispose()
Disposes of the contents of an editor.

error(excp)
Handles an error that occurs while setting the object’s trait value.

get_undo_item(object, name, old_value, new_value)
Creates an undo history entry.

init(parent)
Finishes initializing the editor by creating the underlying toolkit widget.

log_change(undo_factory, *undo_args)
Logs a change made in the editor.

parse_extended_name(name)
Returns a tuple of the form (context_object, ‘name[.name. . .], callable) for a specified extended name of
the form: ‘name’ or ‘context_object_name.name[.name. . .]’.

prepare(parent)
Finishes setting up the editor.

restore_prefs(prefs)
Restores any saved user preference information associated with the editor.

save_prefs()
Returns any user preference information associated with the editor.

set_focus()
Assigns focus to the editor’s underlying toolkit widget.

126 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

string_value(value, format_func=None)
Returns the text representation of a specified object trait value.

If the format_func attribute is set on the editor factory, then this method calls that function to do the
formatting. If the format_str attribute is set on the editor factory, then this method uses that string for
formatting. If neither attribute is set, then this method just calls the built-in unicode() function.

sync_value(user_name, editor_name, mode=’both’, is_list=False, is_event=False)
Set up synchronization between an editor trait and a user object trait.

Also sets the initial value of the editor trait from the user object trait (for modes ‘from’ and ‘both’), and
the initial value of the user object trait from the editor trait (for mode ‘to’).

Parameters

• user_name (string) – The name of the trait to be used on the user object. If empty,
no synchronization will be set up.

• editor_name (string) – The name of the relevant editor trait.

• mode (string, optional; one of 'to', 'from' or 'both') – The di-
rection of synchronization. ‘from’ means that trait changes in the user object should be
propagated to the editor. ‘to’ means that trait changes in the editor should be propagated
to the user object. ‘both’ means changes should be propagated in both directions. The
default is ‘both’.

• is_list (bool, optional) – If true, synchronization for item events will be set up
in addition to the synchronization for the object itself. The default is False.

• is_event (bool, optional) – If true, this method won’t attempt to initialize the
user object or editor trait values. The default is False.

update_editor()
Updates the editor when the object trait changes externally to the editor.

traitsui.editor_factory module

Defines the abstract EditorFactory class, which represents a factory for creating the Editor objects used in a Traits-
based user interface.

class traitsui.editor_factory.EditorFactory(*args, **traits)
Bases: traits.has_traits.HasPrivateTraits

Represents a factory for creating the Editor objects in a Traits-based user interface.

custom_editor(ui, object, name, description, parent)
Generates an editor using the “custom” style.

init()
Performs any initialization needed after all constructor traits have been set.

named_value(name, ui)
Returns the value of a specified extended name of the form: name or con-
text_object_name.name[.name. . .]:

readonly_editor(ui, object, name, description, parent)
Generates an “editor” that is read-only.

simple_editor(ui, object, name, description, parent)
Generates an editor using the “simple” style.

2.1. traitsui package 127

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

text_editor(ui, object, name, description, parent)
Generates an editor using the “text” style.

class traitsui.editor_factory.EditorWithListFactory(*args, **traits)
Bases: traitsui.editor_factory.EditorFactory

Base class for factories of editors for objects that contain lists.

traitsui.editors_gen module

Generates a file containing definitions for editors defined in the various backends.

traitsui.editors_gen.gen_editor_definitions(target_filename=’editors.py’)

Generates a file containing definitions for editors defined in the various backends.

The idea is that if a new editor has been declared in any of the backends, the author needs to create a file called
‘<myeditor>_definition’ in the Traits package (in traitsui). This function will be run each time the user runs the
setup.py file, and the new editor’s definition will be appended to the editors.py file.

The structure of the <myeditor>_definition file should be as follows:

myeditor_definition = '<file name in the backend package>:
<name of the Editor or the EditorFactory class'

traitsui.file_dialog module

traitsui.group module

Defines the Group class used to represent a group of items used in a Traits-based user interface.

class traitsui.group.Group(*values, **traits)
Bases: traitsui.view_element.ViewSubElement

Represents a grouping of items in a user interface view.

get_label(ui)
Gets the label to use this group.

get_shadow(ui)
Returns a ShadowGroup object for the current Group object, which recursively resolves all embedded
Include objects and which replaces each embedded Group object with a corresponding ShadowGroup.

is_includable()
Returns a Boolean value indicating whether the object is replacable by an Include object.

replace_include(view_elements)
Replaces any items that have an id attribute with an Include object with the same ID value, and puts the
object with the ID into the specified ViewElements object.

Parameters view_elements (ViewElements object) – A set of Group, Item, and In-
clude objects

set_container()
Sets the correct container for the content.

class traitsui.group.HFlow(*values, **traits)
Bases: traitsui.group.HGroup

A group in which items are laid out horizontally, and “wrap” when they exceed the available horizontal space..

128 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.group.HGroup(*values, **traits)
Bases: traitsui.group.Group

A group whose items are laid out horizontally.

class traitsui.group.HSplit(*values, **traits)
Bases: traitsui.group.Group

A horizontal group with splitter bars to separate it from other groups.

class traitsui.group.ShadowGroup(shadow, **traits)
Bases: traitsui.group.Group

Corresponds to a Group object, but with all embedded Include objects resolved, and with all embedded Group
objects replaced by corresponding ShadowGroup objects.

get_content(allow_groups=True)
Returns the contents of the Group within a specified context for building a user interface.

This method makes sure that all Group types are of the same type (i.e., Group or Item) and that all Include
objects have been replaced by their substituted values.

get_id()
Returns an ID for the group.

set_container()
Sets the correct container for the content.

class traitsui.group.Tabbed(*values, **traits)
Bases: traitsui.group.Group

A group that is shown as a tabbed notebook.

class traitsui.group.VFlow(*values, **traits)
Bases: traitsui.group.VGroup

A group in which items are laid out vertically, and “wrap” when they exceed the available vertical space.

class traitsui.group.VFold(*values, **traits)
Bases: traitsui.group.VGroup

A group in which items are laid out vertically and can be collapsed (i.e. ‘folded’) by clicking their title.

class traitsui.group.VGrid(*values, **traits)
Bases: traitsui.group.VGroup

A group whose items are laid out in 2 columns.

class traitsui.group.VGroup(*values, **traits)
Bases: traitsui.group.Group

A group whose items are laid out vertically.

class traitsui.group.VSplit(*values, **traits)
Bases: traitsui.group.Group

A vertical group with splitter bars to separate it from other groups.

traitsui.handler module

Defines the Handler class used to manage and control the editing process in a Traits-based user interface.

2.1. traitsui package 129

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.handler.Controller(model=None, **metadata)
Bases: traitsui.handler.Handler

Defines a handler class which provides a view and controller for a specified model.

This class is used when implementing a standard MVC-based design. The model trait contains most, if not all,
of the data being viewed, and can be referenced in a Controller instance’s View definition using unadorned trait
names. (e.g., Item('name')).

get_perform_handlers(info)
Return a list of objects which can handle actions.

By default this returns the Controller instance and the model.

Parameters info (UIInfo instance or None) – The UIInfo associated with the view,
or None.

Returns handlers – A list of objects that may potentially have action methods on them.

Return type list

init_info(info)
Informs the handler what the UIInfo object for a View will be.

trait_context()
Returns the default context to use for editing or configuring traits.

class traitsui.handler.Handler
Bases: traits.has_traits.HasPrivateTraits

Provides access to and control over the run-time workings of a Traits-based user interface.

apply(info)
Handles the Apply button being clicked.

can_drop(info, object)
Can the specified object be inserted into the view?

can_import(info, category)

close(info, is_ok)
Handles the user attempting to close a dialog-based user interface.

This method is called when the user attempts to close a window, by clicking an OK or Cancel button, or
clicking a Close control on the window). It is called before the window is actually destroyed. Override
this method to perform any checks before closing a window.

While Traits UI handles “OK” and “Cancel” events automatically, you can use the value of the is_ok
parameter to implement additional behavior.

Parameters

• info (UIInfo object) – The UIInfo object associated with the view

• is_ok (Boolean) – Indicates whether the user confirmed the changes (such as by click-
ing OK.)

Returns allow_close – A Boolean, indicating whether the window should be allowed to close.

Return type bool

closed(info, is_ok)
Handles a dialog-based user interface being closed by the user.

This method is called after the window is destroyed. Override this method to perform any clean-up tasks
needed by the application.

130 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

Parameters

• info (UIInfo object) – The UIInfo object associated with the view

• is_ok (Boolean) – Indicates whether the user confirmed the changes (such as by click-
ing OK.)

configure_traits(filename=None, view=None, kind=None, edit=True, context=None, han-
dler=None, id=”, scrollable=None, **args)

Configures the object’s traits.

dock_control_for(info, parent, object)
Returns the DockControl object for a specified object.

dock_window_empty(dock_window)
Handles a DockWindow becoming empty.

edit_traits(view=None, parent=None, kind=None, context=None, handler=None, id=”, scrol-
lable=None, **args)

Edits the object’s traits.

get_perform_handlers(info)
Return a list of objects which can handle actions.

This method may be overridden by sub-classes to return a more relevant set of objects.

Parameters info (UIInfo instance or None) – The UIInfo associated with the view,
or None.

Returns handlers – A list of objects that may potentially have action methods on them.

Return type list

init(info)
Initializes the controls of a user interface.

This method is called after all user interface elements have been created, but before the user interface is
displayed. Override this method to customize the user interface before it is displayed.

Parameters info (UIInfo object) – The UIInfo object associated with the view

Returns initialized – A Boolean, indicating whether the user interface was successfully ini-
tialized. A True value indicates that the UI can be displayed; a False value indicates that
the display operation should be cancelled. The default implementation returns True without
taking any other action.

Return type bool

init_info(info)
Informs the handler what the UIInfo object for a View will be.

This method is called before the UI for the View has been constructed. It is provided so that the handler
can save the reference to the UIInfo object in case it exposes viewable traits whose values are properties
that depend upon items in the context being edited.

open_view_for(control, use_mouse=True)
Creates a new view of a specified control.

perform(info, action, event)
Perform computation for an action.

The default method looks for a method matching action.action and calls it (sniffing the signature to
determine how to call it for historical reasons). If this is not found, then it calls the perform() method
of the action.

2.1. traitsui package 131

TraitsUI 4 User Manual, Release 6.0.0

Parameters

• info (UIInfo instance) – The UIInfo assicated with the view, if available.

• action (Action instance) – The Action that the user invoked.

• event (ActionEvent instance) – The ActionEvent associated with the user ac-
tion.

Notes

If overriding in a subclass, the method needs to ensure that any standard menu action items that are needed
(eg. “Close”, “Undo”, “Redo”, “Help”, etc.) get dispatched correctly.

position(info)
Positions a dialog-based user interface on the display.

This method is called after the user interface is initialized (by calling init()), but before the user interface is
displayed. Override this method to position the window on the display device. The default implementation
calls the position() method of the current toolkit.

Usually, you do not need to override this method, because you can control the window’s placement using
the x and y attributes of the View object.

Parameters info (UIInfo object) – The UIInfo object associated with the window

revert(info)
Handles the Revert button being clicked.

setattr(info, object, name, value)
Handles the user setting a specified object trait’s value.

This method is called when an editor attempts to set a new value for a specified object trait attribute. Use
this method to control what happens when a trait editor tries to set an attribute value. For example, you
can use this method to record a history of changes, in order to implement an “undo” mechanism. No result
is returned. The default implementation simply calls the built-in setattr() function. If you override this
method, make sure that it actually sets the attribute, either by calling the parent method or by setting the
attribute directly

Parameters

• info (UIInfo instance) – The UIInfo for the current UI

• object (object) – The object whose attribute is being set

• name (string) – The name of the attribute being set

• value – The value to which the attribute is being set

show_help(info, control=None)
Shows the help associated with the view.

This method is called when the user clicks a Help button in a Traits user interface. The method calls
the global help handler, which might be the default help handler, or might be a custom help handler. See
traitsui.help for details about the setting the global help handler.

Parameters

• info (UIInfo object) – The UIInfo object associated with the view

• control (UI control) – The control that invokes the help dialog box

132 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

trait_view_for(info, view, object, object_name, trait_name)
Gets a specified View object.

class traitsui.handler.ModelView(model=None, **metadata)
Bases: traitsui.handler.Controller

Defines a handler class which provides a view and controller for a specified model.

This class is useful when creating a variant of the standard MVC-based design. A subclass of ModelView
reformulates a number of traits on its model object as properties on the ModelView subclass itself, usually in
order to convert them into a more user-friendly format. In this design, the ModelView subclass supplies not
only the view and the controller, but also, in effect, the model (as a set of properties wrapped around the original
model). Because of this, the ModelView context dictionary specifies the ModelView instance itself as the special
object value, and assigns the original model object as the model value. Thus, the traits of the ModelView object
can be referenced in its View definition using unadorned trait names.

trait_context()
Returns the default context to use for editing or configuring traits.

class traitsui.handler.ViewHandler
Bases: traitsui.handler.Handler

traitsui.handler.close_dock_control(dock_control)
Closes a DockControl (if allowed by the associated Traits UI Handler).

traitsui.handler.default_handler(handler=None)
Returns the global default handler.

If handler is an instance of Handler, this function sets it as the global default handler.

traitsui.help module

Defines the help interface for displaying the help associated with a Traits UI View object.

traitsui.help.default_show_help(info, control)
Default handler for showing the help associated with a view.

traitsui.help.on_help_call(new_show_help=None)
Sets a new global help provider function.

The help provider function must have a signature of function*(*info, control), where info is a UIInfo object for
the current view, and control is the UI control that invokes the function (typically, a Help button). It is provided
in case the help provider needs to position the help window relative to the Help button.

To retrieve the current help provider function, call this function with no arguments.

Parameters new_show_help (function) – The function to set as the new global help provider

Returns previous – The previous global help provider function

Return type callable

traitsui.help.show_help(info, control)
Default handler for showing the help associated with a view.

traitsui.help_template module

Defines the HTML help templates used for formatting Traits UI help pages.

2.1. traitsui package 133

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.help_template.HelpTemplate
Bases: traits.has_traits.HasStrictTraits

Contains HTML templates for displaying help.

traitsui.help_template.help_template(template=None)
Gets or sets the current HelpTemplate in use.

traitsui.helper module

Defines various helper functions that are useful for creating Traits-based user interfaces.

traitsui.helper.commatize(value)
Formats a specified value as an integer string with embedded commas. For example: commatize(12345) returns
“12,345”.

traitsui.helper.enum_values_changed(values, strfunc=<type ’unicode’>)
Recomputes the mappings for a new set of enumeration values.

traitsui.helper.user_name_for(name)
Returns a “user-friendly” name for a specified trait.

traitsui.include module

Defines the Include class, which is used to represent a substitutable element within a user interface View.

class traitsui.include.Include(id, **traits)
Bases: traitsui.view_element.ViewSubElement

A substitutable user interface element, i.e., a placeholder in a view definition.

When a view object constructs an attribute-editing window, any Include objects within the view definition are
replaced with a group or item defined elsewhere in the object’s inheritance tree, based on matching of the name
of the element. If no matching element is found, the Include object is ignored.

An Include object can reference a group or item attribute on a parent class or on a subclass. For example, the
following class contains a view definition that provides for the possibility that a subclass might add “extra”
attributes in the middle of the view:

class Person(HasTraits):
name = Str
age = Int
person_view = View('name', Include('extra'), 'age', kind='modal')

If you directly create an instance of Person, and edit its attributes, the Include object is ignored.

The following class extends Person, and defines a group of “extra” attributes to add to the view defined on
Person:

class LocatedPerson(Person):
street = Str
city = Str
state = Str
zip = Int
extra = Group('street', 'city', 'state', 'zip')

The attribute-editing window for an instance of LocatedPerson displays editors for these extra attributes.

134 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits

TraitsUI 4 User Manual, Release 6.0.0

traitsui.instance_choice module

Defines the various instance descriptors used by the instance editor and instance editor factory classes.

class traitsui.instance_choice.InstanceChoice
Bases: traitsui.instance_choice.InstanceChoiceItem

get_name(object=None)
Returns the name of the item.

get_object()
Returns the object associated with the item.

is_compatible(object)
Indicates whether a specified object is compatible with the item.

class traitsui.instance_choice.InstanceChoiceItem
Bases: traits.has_traits.HasPrivateTraits

get_name(object=None)
Returns the name of the item.

get_object()
Returns the object associated with the item.

get_view()
Returns the view associated with the object.

is_compatible(object)
Indicates whether a specified object is compatible with the item.

is_droppable()
Indicates whether the item supports drag and drop.

is_selectable()
Indicates whether the item can be selected by the user.

class traitsui.instance_choice.InstanceDropChoice
Bases: traitsui.instance_choice.InstanceFactoryChoice

class traitsui.instance_choice.InstanceFactoryChoice
Bases: traitsui.instance_choice.InstanceChoiceItem

get_name(object=None)
Returns the name of the item.

get_object()
Returns the object associated with the item.

is_compatible(object)
Indicates whether a specified object is compatible with the item.

is_droppable()
Indicates whether the item supports drag and drop.

is_selectable()
Indicates whether the item can be selected by the user.

traitsui.item module

Defines the Item class, which is used to represent a single item within a Traits-based user interface.

2.1. traitsui package 135

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.item.Custom(value=None, **traits)
Bases: traitsui.item.Item

An Item using a ‘custom’ style.

class traitsui.item.Heading(label, **traits)
Bases: traitsui.item.Label

An item that is a fancy label.

class traitsui.item.Item(value=None, **traits)
Bases: traitsui.view_element.ViewSubElement

An element in a Traits-based user interface.

Magic:

• Items are rendered as layout elements if name is set to special values:

– name='', the item is rendered as a static label

– name='_', the item is rendered as a separator

– name=' ', the item is rendered as a 5 pixel spacer

– name='23' (any number), the item is rendered as a spacer of the size specified (number of pixels)

get_help(ui)
Gets the help text associated with the Item in a specified UI.

get_id()
Returns an ID used to identify the item.

get_label(ui)
Gets the label to use for a specified Item.

If not specified, the label is set as the name of the corresponding trait, replacing ‘_’ with ‘ ‘, and capitalizing
the first letter (see user_name_for()). This is called the user name.

Magic:

• if attr:item.label is specified, and it begins with ‘. . . ’, the final label is the user name followed by the
item label

• if attr:item.label is specified, and it ends with ‘. . . ’, the final label is the item label followed by the
user name

is_includable()
Returns a Boolean indicating whether the object is replaceable by an Include object.

is_spacer()
Returns True if the item represents a spacer or separator.

class traitsui.item.Label(label, **traits)
Bases: traitsui.item.Item

An item that is a label.

class traitsui.item.Readonly(value=None, **traits)
Bases: traitsui.item.Item

An Item using a ‘readonly’ style.

class traitsui.item.Spring(value=None, **traits)
Bases: traitsui.item.Item

An item that is a layout “spring”.

136 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.item.UCustom(value=None, **traits)
Bases: traitsui.item.Custom

An Item using a ‘custom’ style with no label.

class traitsui.item.UItem(value=None, **traits)
Bases: traitsui.item.Item

An Item that has no label.

class traitsui.item.UReadonly(value=None, **traits)
Bases: traitsui.item.Readonly

An Item using a ‘readonly’ style with no label.

traitsui.key_bindings module

Defines KeyBinding and KeyBindings classes, which manage the mapping of keystroke events into method calls on
controller objects that are supplied by the application.

class traitsui.key_bindings.KeyBinding
Bases: traits.has_traits.HasStrictTraits

Binds one or two keystrokes to a method.

class traitsui.key_bindings.KeyBindings(*bindings, **traits)
Bases: traits.has_traits.HasPrivateTraits

A set of key bindings.

clone(**traits)
Returns a clone of the KeyBindings object.

dispose()
Dispose of the object.

do(event, controllers=[], *args, **kw)
Processes a keyboard event.

edit()
Edits a possibly hierarchical set of KeyBindings.

key_binding_for(binding, key_name)
Returns the current binding for a specified key (if any).

merge(key_bindings)
Merges another set of key bindings into this set.

traitsui.list_str_adapter module

Defines adapter interfaces for use with the ListStrEditor.

class traitsui.list_str_adapter.AnIListStrAdapter
Bases: traits.has_traits.HasPrivateTraits

accepts = Bool(True)
Does the adapter know how to handle the current item or not?

index = Int
The index of the current item being adapted.

2.1. traitsui package 137

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

is_cacheable = Bool(True)
Does the value of accepts depend only upon the type of item?

item = Any
Current item being adapted.

value = Any
The current value (if any).

class traitsui.list_str_adapter.IListStrAdapter
Bases: traits.has_traits.Interface

accepts = Bool
Does the adapter know how to handle the current item or not?

index = Int
The index of the current item being adapted.

is_cacheable = Bool
Does the value of accepts depend only upon the type of item?

item = Any
Current item being adapted.

value = Any
The current value (if any).

class traitsui.list_str_adapter.ListStrAdapter
Bases: traits.has_traits.HasPrivateTraits

The base class for adapting list items to values that can be edited by a ListStrEditor.

adapters = List(IListStrAdapter, update=True)
List of optional delegated adapters.

bg_color = Color(None, update=True)
The default background color for list items.

cache = Any({})
Cache of attribute handlers.

cache_flushed = Event(update=True)
Event fired when the cache is flushed.

can_edit = Bool(True)
Can the text value of each list item be edited.

default_text = Str
Specifies the default text for a new list item.

default_value = Any('')
Specifies the default value for a new list item.

delete(object, trait, index)
Deletes the specified object.trait[index] list item.

dropped = Enum('after', 'before')
Specifies where a dropped item should be placed in the list relative to the item it is dropped on.

even_bg_color = Color(None, update=True)
The default background color for even list items.

even_text_color = Color(None, update=True)
The default text color for even list items.

138 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.Interface
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

get_bg_color(object, trait, index)
Returns the background color for a specified object.trait[index] list item. A result of None means use the
default list item background color.

get_can_drop(object, trait, index, value)
Returns whether the specified value can be dropped on the specified object.trait[index] list item. A value
of True means the value can be dropped; and a value of False indicates that it cannot be dropped.

get_can_edit(object, trait, index)
Returns whether the user can edit a specified object.trait[index] list item. A True result indicates the value
can be edited, while a False result indicates that it cannot be edited.

get_default_bg_color(object, trait)
Returns the default background color for the specified object.trait list.

get_default_image(object, trait)
Returns the default image for the specified object.trait list.

get_default_text(object, trait)
Returns the default text for the specified object.trait list.

get_default_text_color(object, trait)
Returns the default text color for the specified object.trait list.

get_default_value(object, trait)
Returns a new default value for the specified object.trait list.

get_drag(object, trait, index)
Returns the ‘drag’ value for a specified object.trait[index] list item. A result of None means that the item
cannot be dragged.

get_dropped(object, trait, index, value)
Returns how to handle a specified value being dropped on a specified object.trait[index] list item. The
possible return values are:

‘before’ Insert the specified value before the dropped on item.

‘after’ Insert the specified value after the dropped on item.

get_image(object, trait, index)
Returns the name of the image to use for a specified object.trait[index] list item. A result of None means no
image should be used. Otherwise, the result should either be the name of the image, or an ImageResource
item specifying the image to use.

get_item(object, trait, index)
Returns the value of the object.trait[index] list item.

get_text(object, trait, index)
Returns the text to display for a specified object.trait[index] list item.

get_text_color(object, trait, index)
Returns the text color for a specified object.trait[index] list item. A result of None means use the default
list item text color.

image = Str(None, update=True)
The name of the default image to use for list items.

index = Int
The index of the current item being adapter.

insert(object, trait, index, value)
Inserts a new value at the specified object.trait[index] list index.

2.1. traitsui package 139

TraitsUI 4 User Manual, Release 6.0.0

item = Any
The current item being adapted.

len(object, trait)
Returns the number of items in the specified object.trait list.

odd_bg_color = Color(None, update=True)
The default background color for odd list items.

odd_text_color = Color(None, update=True)
The default text color for odd list items.

set_text(object, trait, index, text)
Sets the text for a specified object.trait[index] list item to text.

text_color = Color(None, update=True)
The default text color for list items.

value = Any
The current value (if any).

traitsui.menu module

Defines the standard menu bar for use with Traits UI windows and panels, and standard actions and buttons.

class traitsui.menu.Action
Bases: pyface.action.action.Action

An action on a menu bar in a Traits UI window or panel.

action = Str
The method to call to perform the action, on the Handler for the window. The method must accept a single
parameter, which is a UIInfo object. Because Actions are associated with Views rather than Handlers, you
must ensure that the Handler object for a particular window has a method with the correct name, for each
Action defined on the View for that window.

checked_when = Str
Boolean expression indicating when the action is displayed with a check mark beside it. This attribute
applies only to actions that are included in menus.

defined_when = Str
Pre-condition for including the action in the menu bar or toolbar. If the expression evaluates to False,
the action is not defined in the display. Conditions for defined_when are evaluated only once, when the
display is first constructed.

enabled_when = Str
Pre-condition for enabling the action. If the expression evaluates to False, the action is disabled, that is, it
cannot be selected. All enabled_when conditions are checked each time that any trait value is edited in
the display. Therefore, you can use enabled_when conditions to enable or disable actions in response to
user input.

visible_when = Str
Pre-condition for showing the action. If the expression evaluates to False, the action is not visible (and
disappears if it was previously visible). If the value evaluates to True, the action becomes visible. All
visible_when conditions are checked each time that any trait value is edited in the display. Therefore, you
can use visible_when conditions to hide or show actions in response to user input.

traitsui.menu.ApplyButton = <traitsui.menu.Action object>
When the user clicks the Apply button, all changes made in the window are applied to the model. This option
is meaningful only for modal windows.

140 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/pyface/api/pyface.action.html#pyface.action.action.Action

TraitsUI 4 User Manual, Release 6.0.0

traitsui.menu.CancelButton = <traitsui.menu.Action object>
When the user clicks the Cancel button, all changes made in the window are discarded; if the window is live,
the model is restored to the values it held before the window was opened. The window is then closed.

traitsui.menu.CloseAction = <traitsui.menu.Action object>
The standard “close window” action

traitsui.menu.HelpAction = <traitsui.menu.Action object>
The standard “show help” action

traitsui.menu.HelpButton = <traitsui.menu.Action object>
When the user clicks the Help button, the current help handler is invoked. If the default help handler is used, a
pop-up window is displayed, which contains the help text for the top-level Group (if any), and for the items in
the view. If the default help handler has been overridden, the action is determined by the custom help handler.
See traitsui.help.

traitsui.menu.NoButtons = [<traitsui.menu.Action object>]
The window has no command buttons

traitsui.menu.OKButton = <traitsui.menu.Action object>
When the user clicks the OK button, all changes made in the window are applied to the model, and the window
is closed.

traitsui.menu.RedoAction = <traitsui.menu.Action object>
The standard “redo last undo” action

traitsui.menu.RevertAction = <traitsui.menu.Action object>
The standard “revert all changes” action

traitsui.menu.RevertButton = <traitsui.menu.Action object>
When the user clicks the Revert button, all changes made in the window are cancelled and the original values
are restored. If the changes have been applied to the model (because the user clicked Apply or because the
window is live), the model data is restored as well. The window remains open.

traitsui.menu.Separator
Menu separator

alias of Group

traitsui.menu.StandardMenuBar = <pyface.ui.null.action.menu_bar_manager.MenuBarManager object>
The standard Traits UI menu bar

traitsui.menu.UndoAction = <traitsui.menu.Action object>
The standard “undo last change” action

traitsui.menu.UndoButton = <traitsui.menu.Action object>
Appears as two buttons – Undo and Redo. When Undo is clicked, the most recent change to the data is
cancelled, restoring the previous value. Redo cancels the most recent “undo” operation.

traitsui.message module

Displays a message to the user as a modal window.

class traitsui.message.AutoCloseMessage
Bases: traits.has_traits.HasPrivateTraits

show(parent=None, title=”)
Display the wait message for a limited duration.

class traitsui.message.Message
Bases: traits.has_traits.HasPrivateTraits

2.1. traitsui package 141

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

traitsui.message.auto_close_message(message=’Please wait’, time=2.0, title=’Please wait’,
parent=None)

Displays a message to the user as a modal window with no buttons. The window closes automatically after a
specified time interval (specified in seconds).

traitsui.message.error(message=”, title=’Message’, buttons=[’OK’, ’Cancel’], parent=None)
Displays a message to the user as a modal window with the specified title and buttons.

If buttons is not specified, OK and Cancel buttons are used, which is appropriate for confirmations, where the
user must decide whether to proceed. Be sure to word the message so that it is clear that clicking OK continues
the operation.

traitsui.message.message(message=”, title=’Message’, buttons=[’OK’], parent=None)
Displays a message to the user as a model window with the specified title and buttons.

If buttons is not specified, a single OK button is used, which is appropriate for notifications, where no further
action or decision on the user’s part is required.

traitsui.mimedata module

traitsui.table_column module

Defines the table column descriptor used by the editor and editor factory classes for numeric and table editors.

class traitsui.table_column.ExpressionColumn
Bases: traitsui.table_column.ObjectColumn

A column for displaying computed values.

get_raw_value(object)
Gets the unformatted value of the column for a specified object.

class traitsui.table_column.ListColumn
Bases: traitsui.table_column.TableColumn

A column for editing lists.

get_editor(object)
Gets the editor for the column of a specified object.

get_value(object)
Gets the value of the column for a specified object.

key(object)
Returns the value to use for sorting.

set_value(object, value)
Sets the value of the column for a specified object.

class traitsui.table_column.NumericColumn
Bases: traitsui.table_column.ObjectColumn

A column for editing Numeric arrays.

get_cell_color(object)
Returns the cell background color for the column for a specified object row.

get_data_column(object)
Gets the entire contents of the specified object column.

get_editor(object)
Gets the editor for the column of a specified object row.

142 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

get_horizontal_alignment(object)
Returns the horizontal alignment for the column for a specified object row.

get_menu(object, row)
Returns the context menu to display when the user right-clicks on the column for a specified object row.

get_text_color(object)
Returns the text color for the column for a specified object row.

get_text_font(object)
Returns the text font for the column for a specified object row.

get_type(object)
Gets the type of data for the column for a specified object row.

get_value(object)
Gets the value of the column for a specified object row.

get_vertical_alignment(object)
Returns the vertical alignment for the column for a specified object row.

is_droppable(object, row, value)
Returns whether a specified value is valid for dropping on the column for a specified object row.

is_editable(object)
Returns whether the column is editable for a specified object row.

set_value(object, row, value)
Sets the value of the column for a specified object row.

class traitsui.table_column.ObjectColumn
Bases: traitsui.table_column.TableColumn

A column for editing objects.

get_drag_value(object)
Returns the drag value for the column.

get_editor(object)
Gets the editor for the column of a specified object.

get_raw_value(object)
Gets the unformatted value of the column for a specified object.

get_style(object)
Gets the editor style for the column of a specified object.

get_value(object)
Gets the formatted value of the column for a specified object.

is_droppable(object, value)
Returns whether a specified value is valid for dropping on the column for a specified object.

key(object)
Returns the value to use for sorting.

set_value(object, value)
Sets the value of the column for a specified object.

target_name(object)
Returns the target object and name for the column.

class traitsui.table_column.TableColumn
Bases: traits.has_traits.HasPrivateTraits

2.1. traitsui package 143

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

Represents a column in a table editor.

cmp(object1, object2)
Returns the result of comparing the column of two different objects.

This is deprecated.

get_cell_color(object)
Returns the cell background color for the column for a specified object.

get_edit_height(object)
Returns the height of the column cell’s row while it is being edited.

get_edit_width(object)
Returns the edit width of the column.

get_graph_color(object)
Returns the cell background graph color for the column for a specified object.

get_horizontal_alignment(object)
Returns the horizontal alignment for the column for a specified object.

get_image(object)
Returns the image to display for the column for a specified object.

get_label()
Gets the label of the column.

get_maximum(object)
Returns the maximum value a numeric column can have.

get_menu(object)
Returns the context menu to display when the user right-clicks on the column for a specified object.

get_object(object)
Returns the actual object being edited.

get_renderer(object)
Returns the renderer for the column of a specified object.

get_text_color(object)
Returns the text color for the column for a specified object.

get_text_font(object)
Returns the text font for the column for a specified object.

get_tooltip(object)
Returns the tooltip to display when the user mouses over the column for a specified object.

get_type(object)
Gets the type of data for the column for a specified object.

get_vertical_alignment(object)
Returns the vertical alignment for the column for a specified object.

get_view(object)
Returns the view to display when clicking a non-editable cell.

get_width()
Returns the width of the column.

is_auto_editable(object)
Returns whether the column is automatically edited/viewed for a specified object.

144 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

is_droppable(object, value)
Returns whether a specified value is valid for dropping on the column for a specified object.

is_editable(object)
Returns whether the column is editable for a specified object.

on_click(object)
Called when the user clicks on the column.

on_dclick(object)
Called when the user clicks on the column.

traitsui.table_filter module

Defines the filter object used to filter items displayed in a table editor.

class traitsui.table_filter.EvalTableFilter
Bases: traitsui.table_filter.TableFilter

A table filter based on evaluating an expression.

description()
Returns a user readable description of what kind of object satisfies the filter.

filter(object)
Returns whether a specified object meets the filter or search criteria.

class traitsui.table_filter.GenericTableFilterRule(**traits)
Bases: traits.has_traits.HasPrivateTraits

A general rule used by a table filter.

clone_traits(traits=None, memo=None, copy=None, **metadata)
Clones a new object from this one, optionally copying only a specified set of traits.

contains(value1, value2)

description()
Returns a description of the filter.

ends_with(value1, value2)

eq(value1, value2)

ge(value1, value2)

gt(value1, value2)

ignored_traits = ['filter', 'name_editor', 'value_editor']

is_true(object)
Returns whether the rule is true for a specified object.

le(value1, value2)

lt(value1, value2)

ne(value1, value2)

starts_with(value1, value2)

class traitsui.table_filter.GenericTableFilterRuleAndOrColumn
Bases: traitsui.table_column.ObjectColumn

Table column that displays whether a filter rule is conjoining (‘and’) or disjoining (‘or’).

2.1. traitsui package 145

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

get_value(object)
Returns the traits editor of the column for a specified object.

class traitsui.table_filter.GenericTableFilterRuleEnabledColumn
Bases: traitsui.table_column.ObjectColumn

Table column that indicates whether a filter rule is enabled.

get_value(object)
Returns the traits editor of the column for a specified object.

class traitsui.table_filter.GenericTableFilterRuleNameColumn
Bases: traitsui.table_column.ObjectColumn

Table column for the name of an object trait.

get_editor(object)
Returns the traits editor of the column for a specified object.

class traitsui.table_filter.GenericTableFilterRuleValueColumn
Bases: traitsui.table_column.ObjectColumn

Table column for the value of an object trait.

get_editor(object)
Returns the traits editor of the column for a specified object.

class traitsui.table_filter.MenuTableFilter
Bases: traitsui.table_filter.RuleTableFilter

A table filter based on a menu of rules.

description()
Returns a user8readable description of what kind of object satisfies the filter.

filter(object)
Returns whether a specified object meets the filter or search criteria.

class traitsui.table_filter.RuleTableFilter
Bases: traitsui.table_filter.TableFilter

A table filter based on rules.

description()
Returns a user-readable description of the kind of object that satisfies the filter.

edit_view(object)
Return a view to use for editing the filter.

The ‘’object” parameter is a sample object for the table that the filter will be applied to. It is supplied
in case the filter needs to extract data or metadata from the object. If the table is empty, the ‘’object”
argument is None.

filter(object)
Returns whether a specified object meets the filter or search criteria.

class traitsui.table_filter.TableFilter
Bases: traits.has_traits.HasPrivateTraits

Filter for items displayed in a table.

description()
Returns a user-readable description of what kind of object satisfies the filter.

146 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

edit(object)
Edits the contents of the filter.

edit_view(object)
Return a view to use for editing the filter.

The ‘’object” parameter is a sample object for the table that the filter will be applied to. It is supplied
in case the filter needs to extract data or metadata from the object. If the table is empty, the ‘’object”
argument is None.

filter(object)
Returns whether a specified object meets the filter or search criteria.

ignored_traits = ['_name', 'template', 'desc']

traitsui.tabular_adapter module

Defines the adapter classes associated with the Traits UI TabularEditor.

class traitsui.tabular_adapter.AnITabularAdapter
Bases: traits.has_traits.HasPrivateTraits

accepts = Bool(True)
Does the adapter know how to handle the current item or not:

column = Any
The current column id being adapted (if any):

columns = List(Str)
The list of columns the adapter supports. The items in the list have the same format as the columns trait in
the TabularAdapter class, with the additional requirement that the string values must correspond
to a string value in the associated TabularAdapter class.

is_cacheable = Bool(True)
Does the value of accepts depend only upon the type of item?

item = Any
Current item being adapted:

row = Int
The row index of the current item being adapted:

value = Any
The current value (if any):

class traitsui.tabular_adapter.ITabularAdapter
Bases: traits.has_traits.Interface

accepts = Bool
Does the adapter know how to handle the current item or not:

column = Any
The current column id being adapted (if any):

columns = List(Str)
The list of columns the adapter supports. The items in the list have the same format as the columns trait in
the TabularAdapter class, with the additional requirement that the string values must correspond
to a string value in the associated TabularAdapter class.

is_cacheable = Bool
Does the value of accepts depend only upon the type of item?

2.1. traitsui package 147

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.Interface

TraitsUI 4 User Manual, Release 6.0.0

item = Any
Current item being adapted:

row = Int
The row index of the current item being adapted:

value = Any
The current value (if any):

class traitsui.tabular_adapter.TabularAdapter
Bases: traits.has_traits.HasPrivateTraits

The base class for adapting list items to values that can be edited by a TabularEditor.

adapter_column_indices = Property(depends_on='adapters,columns')
For each adapter, specifies the column indices the adapter handles.

adapter_column_map = Property(depends_on='adapters,columns')
For each adapter, specifies the mapping from column index to column id.

adapters = List(ITabularAdapter, update=True)
List of optional delegated adapters.

alignment = Enum('left', 'center', 'right')
Horizontal alignment to use for a specified column.

bg_color = Property
The background color for a row item.

cache = Any({})
Cache of attribute handlers.

cache_flushed = Event(update=True)
Event fired when the cache is flushed.

can_drop = Bool(False)
Can any arbitrary value be dropped onto the tabular view.

can_edit = Bool(True)
Can the text value of each item be edited?

cleanup()
Clean up the adapter to remove references to objects.

column = Int
The column index of the current item being adapted.

column_dict = Property()
Maps UI name of column to value identifying column to the adapter, if different.

column_id = Any
The current column id being adapted (if any).

column_map = Property(depends_on='columns')
The mapping from column indices to column identifiers (defined by the columns trait).

column_menu = Any
The context menu for column header.

columns = List()
A list of columns that should appear in the table. Each entry can have one of two forms: string or
(string, id), where string is the UI name of the column, and id is a value that identifies that
column to the adapter. Normally this value is either a trait name or an index, but it can be any value that
the adapter wants. If only string is specified, then id is the index of the string within columns.

148 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

content = Property
The content of a row/column item (may be any Python value).

default_bg_color = Color(None, update=True)
The default background color for table rows.

default_text_color = Color(None, update=True)
The default text color for table rows.

default_value = Any('')
Specifies the default value for a new row. This will usually need to be overridden.

delete(object, trait, row)
Deletes the specified row item.

This method is only called if the delete operation is specified in the TabularEditor operation trait,
and the user requests that the item be deleted from the table.

The adapter can still choose not to delete the specified item if desired, although that may prove confusing
to the user.

The default implementation assumes the trait defined by object.trait is a mutable sequence and
attempts to perform a del object.trait[row] operation.

drag = Property
The value to be dragged for a specified row item.

dropped = Enum('after', 'before')
Specifies where a dropped item should be placed in the table relative to the item it is dropped on.

even_bg_color = Color(None, update=True)
The default background color for even table rows.

even_text_color = Color(None, update=True)
The default text color for even table rows.

font = Font(None)
The font for a row item.

format = Str('%s')
The Python format string to use for a specified column.

get_alignment(object, trait, column)
Returns the alignment style to use for a specified column.

The possible values that can be returned are: 'left', 'center' or 'right'. All table items share
the same alignment for a specified column.

get_bg_color(object, trait, row, column=0)
Returns the background color to use for a specified row or cell.

A result of None means use the default background color; otherwise a toolkit-compatible color should be
returned. Note that all columns for the specified table row will use the background color value returned.

get_can_drop(object, trait, row, value)
Returns whether the specified value can be dropped on the specified row.

A value of True means the value can be dropped; and a value of False indicates that it cannot be
dropped.

The result is used to provide the user positive or negative drag feedback while dragging items over the
table. value will always be a single value, even if multiple items are being dragged. The editor handles
multiple drag items by making a separate call to get_can_drop() for each item being dragged.

2.1. traitsui package 149

TraitsUI 4 User Manual, Release 6.0.0

get_can_edit(object, trait, row)
Returns whether the user can edit a specified row.

A True result indicates that the value can be edited, while a False result indicates that it cannot.

get_column(object, trait, index)
Returns the column id corresponding to a specified column index.

get_column_menu(object, trait, row, column)
Returns the context menu for a specified column.

get_content(object, trait, row, column)
Returns the content to display for a specified cell.

get_default_value(object, trait)
Returns a new default value for the specified object.trait list.

This method is called when insert or append operations are allowed and the user requests that a new item
be added to the table. The result should be a new instance of whatever underlying representation is being
used for table items.

The default implementation simply returns the value of the adapter’s default_value trait.

get_drag(object, trait, row)
Returns the value to be dragged for a specified row.

A result of None means that the item cannot be dragged. Note that the value returned does not have to be
the actual row item. It can be any value that you want to drag in its place. In particular, if you want the
drag target to receive a copy of the row item, you should return a copy or clone of the item in its place.

Also note that if multiple items are being dragged, and this method returns None for any item in the set,
no drag operation is performed.

get_dropped(object, trait, row, value)
Returns how to handle a specified value being dropped on a specified row.

The possible return values are:

• 'before': Insert the specified value before the dropped on item.

• 'after': Insert the specified value after the dropped on item.

Note there is no result indicating do not drop since you will have already indicated that the object can
be dropped by the result returned from a previous call to get_can_drop().

get_font(object, trait, row, column=0)
Returns the font to use for displaying a specified row or cell.

A result of None means use the default font; otherwise a toolkit font object should be returned. Note that
all columns for the specified table row will use the font value returned.

get_format(object, trait, row, column)
Returns the Python formatting string to apply to the specified cell.

The resulting of formatting with this string will be used as the text to display it in the table.

The return can be any Python string containing exactly one old-style Python formatting sequence, such as
'%.4f' or '(%5.2f)'.

get_image(object, trait, row, column)
Returns the image to display for a specified cell.

A result of None means no image will be displayed in the specified table cell. Otherwise the result should
either be the name of the image, or an ImageResource object specifying the image to display.

150 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

A name is allowed in the case where the image is specified in the TabularEditor images trait. In
that case, the name should be the same as the string specified in the ImageResource constructor.

get_item(object, trait, row)
Returns the specified row item.

The value returned should be the value that exists (or logically exists) at the specified row in your data. If
your data is not really a list or array, then you can just use row as an integer key or token that can be used to
retrieve a corresponding item. The value of row will always be in the range: 0 <= row < len(object,
trait) (i.e. the result returned by the adapter len() method).

The default implementation assumes the trait defined by object.trait is a sequence and attempts to
return the value at index row. If an error occurs, it returns None instead. This definition should work
correctly for lists, tuples and arrays, or any other object that is indexable, but will have to be overridden
for all other cases.

get_label(section, obj=None)
Override this method if labels will vary from object to object.

get_menu(object, trait, row, column)
Returns the context menu for a specified cell.

get_row_label(section, obj=None)

get_text(object, trait, row, column)
Returns a string containing the text to display for a specified cell.

If the underlying data representation for a specified item is not a string, then it is your responsibility to
convert it to one before returning it as the result.

get_text_color(object, trait, row, column=0)
Returns the text color to use for a specified row or cell.

A result of None means use the default text color; otherwise a toolkit-compatible color should be returned.
Note that all columns for the specified table row will use the text color value returned.

get_tooltip(object, trait, row, column)
Returns a string containing the tooltip to display for a specified cell.

You should return the empty string if you do not wish to display a tooltip.

get_width(object, trait, column)
Returns the width to use for a specified column.

If the value is <= 0, the column will have a default width, which is the same as specifying a width of 0.1.

If the value is > 1.0, it is converted to an integer and the result is the width of the column in pixels. This is
referred to as a fixed width column.

If the value is a float such that 0.0 < value <= 1.0, it is treated as the unnormalized fraction of the available
space that is to be assigned to the column. What this means requires a little explanation.

To arrive at the size in pixels of the column at any given time, the editor adds together all of the unnor-
malized fraction values returned for all columns in the table to arrive at a total value. Each unnormalized
fraction is then divided by the total to create a normalized fraction. Each column is then assigned an
amount of space in pixels equal to the maximum of 30 or its normalized fraction multiplied by the avail-
able space. The available space is defined as the actual width of the table minus the width of all fixed
width columns. Note that this calculation is performed each time the table is resized in the user interface,
thus allowing columns of this type to increase or decrease their width dynamically, while leaving fixed
width columns unchanged.

image = Str(None, update=True)
The name of the default image to use for column items.

2.1. traitsui package 151

TraitsUI 4 User Manual, Release 6.0.0

insert(object, trait, row, value)
Inserts value at the specified object.trait[row] index.

The specified value can be:

• An item being moved from one location in the data to another.

• A new item created by a previous call to get_default_value().

• An item the adapter previously approved via a call to get_can_drop().

The adapter can still choose not to insert the item into the data, although that may prove confusing to the
user.

The default implementation assumes the trait defined by object.trait is a mutable sequence and
attempts to perform an object.trait[row:row] = [value] operation.

item = Any
Current item being adapted.

label_map = Property(depends_on='columns')
The mapping from column indices to column labels (defined by the columns trait).

len(object, trait)
Returns the number of row items in the specified object.trait.

The result should be an integer greater than or equal to 0.

The default implementation assumes the trait defined by object.trait is a sequence and attempts to
return the result of calling len(object.trait). It will need to be overridden for any type of data
which for which len() will not work.

menu = Any
The context menu for a row/column item.

name = Str
The name of the trait being edited.

object = Instance(HasTraits)
The object whose trait is being edited.

odd_bg_color = Color(None, update=True)
The default background color for odd table rows.

odd_text_color = Color(None, update=True)
The default text color for odd table rows.

row = Int
The row index of the current item being adapted.

row_label_name = Either(None, Str)
The name of the trait on a row item containing the value to use as a row label. If None, the label will be
the empty string.

set_text(object, trait, row, column, text)
Sets the value for the specified cell.

This method is called when the user completes an editing operation on a table cell.

The string specified by text is the value that the user has entered in the table cell. If the underlying data
does not store the value as text, it is your responsibility to convert text to the correct representation used.

text = Property
The text of a row/column item.

152 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

text_color = Property
The text color for a row item.

tooltip = Str
The tooltip information for a row/column item.

value = Any
The current value (if any).

width = Float(-1)
Width of a specified column.

traitsui.theme module

Defines ‘theme’ related classes.

class traitsui.theme.Theme(image=None, **traits)
Bases: traits.has_traits.HasPrivateTraits

traitsui.toolkit module

Defines the stub functions used for creating concrete implementations of the standard EditorFactory subclasses sup-
plied with the Traits package.

Most of the logic for determining which backend toolkit to use can now be found in pyface.base_toolkit.

class traitsui.toolkit.Toolkit(package, toolkit, *packages, **traits)
Bases: pyface.base_toolkit.Toolkit

Abstract base class for GUI toolkits.

array_editor(*args, **traits)

boolean_editor(*args, **traits)

button_editor(*args, **traits)

check_list_editor(*args, **traits)

code_editor(*args, **traits)

color_editor(*args, **traits)

color_trait(*args, **traits)

compound_editor(*args, **traits)

constants()
Returns a dictionary of useful constants.

Currently, the dictionary should have the following key/value pairs:

• WindowColor’: the standard window background color in the toolkit specific color format.

custom_editor(*args, **traits)

destroy_children(control)
Destroys all of the child controls of a specified GUI toolkit control.

destroy_control(control)
Destroys a specified GUI toolkit control.

directory_editor(*args, **traits)

2.1. traitsui package 153

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

dnd_editor(*args, **traits)

drop_editor(*args, **traits)

enum_editor(*args, **traits)

file_editor(*args, **traits)

font_editor(*args, **traits)

font_trait(*args, **traits)

history_editor(*args, **traits)

hook_events(ui, control, events=None, handler=None)
Hooks all specified events for all controls in a UI so that they can be routed to the correct event handler.

html_editor(*args, **traits)

image_editor(*args, **traits)

image_enum_editor(*args, **traits)

image_size(image)
Returns a (width, height) tuple containing the size of a specified toolkit image.

instance_editor(*args, **traits)

key_binding_editor(*args, **traits)

key_event_to_name(event)
Converts a keystroke event into a corresponding key name.

kiva_font_trait(*args, **traits)

list_editor(*args, **traits)

list_str_editor(*args, **traits)

null_editor(*args, **traits)

ordered_set_editor(*args, **traits)

plot_editor(*args, **traits)

position(ui)
Positions the associated dialog window on the display.

range_editor(*args, **traits)

rebuild_ui(ui)
Rebuilds a UI after a change to the content of the UI.

rgb_color_editor(*args, **traits)

rgb_color_trait(*args, **traits)

rgba_color_editor(*args, **traits)

rgba_color_trait(*args, **traits)

route_event(ui, event)
Routes a “hooked” event to the corrent handler method.

save_window(ui)
Saves user preference information associated with a UI window.

set_icon(ui)
Sets the icon for the UI window.

154 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

set_title(ui)
Sets the title for the UI window.

shell_editor(*args, **traits)

show_help(ui, control)
Shows a Help window for a specified UI and control.

skip_event(event)
Indicates that an event should continue to be processed by the toolkit.

table_editor(*args, **traits)

tabular_editor(*args, **traits)

text_editor(*args, **traits)

title_editor(*args, **traits)

tree_editor(*args, **traits)

tuple_editor(*args, **traits)

ui_editor()

ui_info(ui, parent)
Creates a GUI-toolkit-specific temporary “live update” popup dialog user interface using information from
the specified UI object.

ui_live(ui, parent)
Creates a GUI-toolkit-specific non-modal “live update” window user interface using information from the
specified UI object.

ui_livemodal(ui, parent)
Creates a GUI-toolkit-specific modal “live update” dialog user interface using information from the spec-
ified UI object.

ui_modal(ui, parent)
Creates a GUI-toolkit-specific modal dialog user interface using information from the specified UI object.

ui_nonmodal(ui, parent)
Creates a GUI-toolkit-specific non-modal dialog user interface using information from the specified UI
object.

ui_panel(ui, parent)
Creates a GUI-toolkit-specific panel-based user interface using information from the specified UI object.

ui_popover(ui, parent)
Creates a GUI-toolkit-specific temporary “live update” popup dialog user interface using information from
the specified UI object.

ui_popup(ui, parent)
Creates a GUI-toolkit-specific temporary “live update” popup dialog user interface using information from
the specified UI object.

ui_subpanel(ui, parent)
Creates a GUI-toolkit-specific subpanel-based user interface using information from the specified UI ob-
ject.

ui_wizard(ui, parent)
Creates a GUI-toolkit-specific wizard dialog user interface using information from the specified UI object.

value_editor(*args, **traits)

view_application(context, view, kind=None, handler=None, id=”, scrollable=None, args=None)

2.1. traitsui package 155

TraitsUI 4 User Manual, Release 6.0.0

Creates a GUI-toolkit-specific modal dialog user interface that runs as a complete application using
information from the specified View object.

Parameters

• context (object or dictionary) – A single object or a dictionary of
string/object pairs, whose trait attributes are to be edited. If not specified, the current
object is used.

• view (view or string) – A View object that defines a user interface for editing trait
attribute values.

• kind (string) – The type of user interface window to create. See the trait-
sui.view.kind_trait trait for values and their meanings. If kind is unspecified or None,
the kind attribute of the View object is used.

• handler (Handler object) – A handler object used for event handling in the dialog
box. If None, the default handler for Traits UI is used.

• id (string) – A unique ID for persisting preferences about this user interface, such as
size and position. If not specified, no user preferences are saved.

• scrollable (Boolean) – Indicates whether the dialog box should be scrollable. When
set to True, scroll bars appear on the dialog box if it is not large enough to display all of
the items in the view at one time.

traitsui.toolkit.assert_toolkit_import(names)
Raise an error if a toolkit with the given name should not be allowed to be imported.

traitsui.toolkit.toolkit(*toolkits)
Selects and returns a low-level GUI toolkit.

Use this function to get a reference to the current toolkit.

Parameters *toolkits (strings) – Toolkit names to try if toolkit not already selected. If not
supplied, will try all traitsui.toolkits entry points until a match is found.

Returns Appropriate concrete Toolkit subclass for selected toolkit.

Return type toolkit

Raises

• TraitError – If no working toolkit is found.

• RuntimeError – If no ETSConfig.toolkit is set but the toolkit cannot be loaded for some
reason.

traitsui.toolkit.toolkit_object(name, raise_exceptions=False)
Return the toolkit specific object with the given name.

Parameters

• name (str) – The relative module path and the object name separated by a colon.

• raise_exceptions (bool) – Whether or not to raise an exception if the name cannot
be imported.

Raises

• TraitError – If no working toolkit is found.

156 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

• RuntimeError – If no ETSConfig.toolkit is set but the toolkit cannot be loaded for some
reason. This is also raised if raise_exceptions is True the backend does not implement the
desired object.

traitsui.toolkit_traits module

traitsui.toolkit_traits.ColorTrait(*args, **traits)

traitsui.toolkit_traits.FontTrait(*args, **traits)

traitsui.toolkit_traits.RGBColorTrait(*args, **traits)

traitsui.tree_node module

Defines the tree node descriptor used by the tree editor and tree editor factory classes.

class traitsui.tree_node.ITreeNode
Bases: traits.has_traits.Interface

activated()
Handles an object being activated.

allows_children()
Returns whether this object can have children.

append_child(child)
Appends a child to the object’s children.

can_add(add_object)
Returns whether a given object is droppable on the node.

can_auto_close()
Returns whether the object’s children should be automatically closed.

can_auto_open()
Returns whether the object’s children should be automatically opened.

can_copy()
Returns whether the object’s children can be copied.

can_delete()
Returns whether the object’s children can be deleted.

can_delete_me()
Returns whether the object can be deleted.

can_insert()
Returns whether the object’s children can be inserted (vs. appended).

can_rename()
Returns whether the object’s children can be renamed.

can_rename_me()
Returns whether the object can be renamed.

click()
Handles an object being clicked.

confirm_delete()
Checks whether a specified object can be deleted.

The following return values are possible:

2.1. traitsui package 157

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.Interface

TraitsUI 4 User Manual, Release 6.0.0

• True if the object should be deleted with no further prompting.

• False if the object should not be deleted.

• Anything else: Caller should take its default action (which might include prompting the user to con-
firm deletion).

dclick()
Handles an object being double-clicked.

delete_child(index)
Deletes a child at a specified index from the object’s children.

drop_object(dropped_object)
Returns a droppable version of a specified object.

get_add()
Returns the list of classes that can be added to the object.

get_children()
Gets the object’s children.

get_children_id()
Gets the object’s children identifier.

get_column_labels(object)
Get the labels for any columns that have been defined.

get_drag_object()
Returns a draggable version of a specified object.

get_icon(is_expanded)
Returns the icon for a specified object.

get_icon_path()
Returns the path used to locate an object’s icon.

get_label()
Gets the label to display for a specified object.

get_menu()
Returns the right-click context menu for an object.

get_name()
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

get_tooltip()
Gets the tooltip to display for a specified object.

get_view()
Gets the view to use when editing an object.

has_children()
Returns whether the object has children.

insert_child(index, child)
Inserts a child into the object’s children.

select()
Handles an object being selected.

set_label(label)
Sets the label for a specified object.

158 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

when_children_changed(listener, remove)
Sets up or removes a listener for children being changed on a specified object.

when_children_replaced(listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

when_column_labels_change(object, listener, remove)
Sets up or removes a listener for the column labels being changed on a specified object.

This will fire when either the list is reassigned or when it is modified. I.e., it listens both to the trait change
event and the trait_items change event. Implement the listener appropriately to handle either case.

when_label_changed(listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

class traitsui.tree_node.ITreeNodeAdapter(adaptee, **traits)
Bases: traits.adaptation.adapter.Adapter

Abstract base class for an adapter that implements the ITreeNode interface.

Usage:

1. Create a subclass of ITreeNodeAdapter.

2. Register the adapter to define what class (or classes) this is an ITreeNode adapter for (ie.
register_factory(<from class>, ITreeNode, ITreeNodeAdapter)).

3. Override any of the following methods as necessary, using the self.adaptee trait to access the adapted
object if needed.

Note: This base class implements all of the ITreeNode interface methods, but does not necessarily provide
useful implementations for all of the methods. It allows you to get a new adapter class up and running quickly,
but you should carefully review your final adapter implementation class to make sure it behaves correctly in
your application.

activated()
Handles an object being activated.

allows_children()
Returns whether this object can have children.

append_child(child)
Appends a child to the object’s children.

can_add(add_object)
Returns whether a given object is droppable on the node.

can_auto_close()
Returns whether the object’s children should be automatically closed.

can_auto_open()
Returns whether the object’s children should be automatically opened.

can_copy()
Returns whether the object’s children can be copied.

can_delete()
Returns whether the object’s children can be deleted.

can_delete_me()
Returns whether the object can be deleted.

2.1. traitsui package 159

http://docs.enthought.com/traits/traits_api_reference/traits.adaptation.html#traits.adaptation.adapter.Adapter

TraitsUI 4 User Manual, Release 6.0.0

can_insert()
Returns whether the object’s children can be inserted (vs. appended).

can_rename()
Returns whether the object’s children can be renamed.

can_rename_me()
Returns whether the object can be renamed.

click()
Handles an object being clicked.

confirm_delete()
Checks whether a specified object can be deleted.

The following return values are possible:

• True if the object should be deleted with no further prompting.

• False if the object should not be deleted.

• Anything else: Caller should take its default action (which might include prompting the user to con-
firm deletion).

dclick()
Handles an object being double-clicked.

delete_child(index)
Deletes a child at a specified index from the object’s children.

drop_object(dropped_object)
Returns a droppable version of a specified object.

get_add()
Returns the list of classes that can be added to the object.

get_background()
Returns the background for object

get_children()
Gets the object’s children.

get_children_id()
Gets the object’s children identifier.

get_column_labels()
Get the labels for any columns that have been defined.

get_drag_object()
Returns a draggable version of a specified object.

get_foreground()
Returns the foreground for object

get_icon(is_expanded)
Returns the icon for a specified object.

get_icon_path()
Returns the path used to locate an object’s icon.

get_label()
Gets the label to display for a specified object.

get_menu()
Returns the right-click context menu for an object.

160 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

get_name()
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

get_tooltip()
Gets the tooltip to display for a specified object.

get_view()
Gets the view to use when editing an object.

has_children()
Returns whether the object has children.

insert_child(index, child)
Inserts a child into the object’s children.

select()
Handles an object being selected.

set_label(label)
Sets the label for a specified object.

when_children_changed(listener, remove)
Sets up or removes a listener for children being changed on a specified object.

when_children_replaced(listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

when_column_labels_change(listener, remove)
Sets up or removes a listener for the column labels being changed on a specified object.

This will fire when either the list is reassigned or when it is modified. I.e., it listens both to the trait change
event and the trait_items change event. Implement the listener appropriately to handle either case.

when_label_changed(listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

class traitsui.tree_node.ITreeNodeAdapterBridge
Bases: traits.has_traits.HasPrivateTraits

Private class for use by a toolkit-specific implementation of the TreeEditor to allow bridging the TreeNode
interface used by the editor to the ITreeNode interface used by object adapters.

activated(object)
Handles an object being activated.

allows_children(object)
Returns whether this object can have children.

append_child(object, child)
Appends a child to the object’s children.

can_add(object, add_object)
Returns whether a given object is droppable on the node.

can_auto_close(object)
Returns whether the object’s children should be automatically closed.

can_auto_open(object)
Returns whether the object’s children should be automatically opened.

can_copy(object)
Returns whether the object’s children can be copied.

2.1. traitsui package 161

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

can_delete(object)
Returns whether the object’s children can be deleted.

can_delete_me(object)
Returns whether the object can be deleted.

can_insert(object)
Returns whether the object’s children can be inserted (vs. appended).

can_rename(object)
Returns whether the object’s children can be renamed.

can_rename_me(object)
Returns whether the object can be renamed.

click(object)
Handles an object being clicked.

confirm_delete(object)
Checks whether a specified object can be deleted.

The following return values are possible:

• True if the object should be deleted with no further prompting.

• False if the object should not be deleted.

• Anything else: Caller should take its default action (which might include prompting the user to con-
firm deletion).

dclick(object)
Handles an object being double-clicked.

delete_child(object, index)
Deletes a child at a specified index from the object’s children.

drop_object(object, dropped_object)
Returns a droppable version of a specified object.

get_add(object)
Returns the list of classes that can be added to the object.

get_background(object)
Returns the background for object

get_children(object)
Gets the object’s children.

get_children_id(object)
Gets the object’s children identifier.

get_column_labels(object)
Get the labels for any columns that have been defined.

get_drag_object(object)
Returns a draggable version of a specified object.

get_foreground(object)
Returns the foreground for object

get_icon(object, is_expanded)
Returns the icon for a specified object.

get_icon_path(object)
Returns the path used to locate an object’s icon.

162 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

get_label(object)
Gets the label to display for a specified object.

get_menu(object)
Returns the right-click context menu for an object.

get_name(object)
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

get_tooltip(object)
Gets the tooltip to display for a specified object.

get_view(object)
Gets the view to use when editing an object.

has_children(object)
Returns whether the object has children.

insert_child(object, index, child)
Inserts a child into the object’s children.

select(object)
Handles an object being selected.

set_label(object, label)
Sets the label for a specified object.

when_children_changed(object, listener, remove)
Sets up or removes a listener for children being changed on a specified object.

when_children_replaced(object, listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

when_column_labels_change(object, listener, remove)
Sets up or removes a listener for the column labels being changed on a specified object.

This will fire when either the list is reassigned or when it is modified. I.e., it listens both to the trait change
event and the trait_items change event. Implement the listener appropriately to handle either case.

when_label_changed(object, listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

class traitsui.tree_node.MultiTreeNode(**traits)
Bases: traitsui.tree_node.TreeNode

activated(object)
Handles an object being activated.

allows_children(object)
Returns whether this object can have children (True for this class).

can_add(object, add_object)
Returns whether a given object is droppable on the node (False for this class).

can_auto_close(object)
Returns whether the object’s children should be automatically closed.

can_auto_open(object)
Returns whether the object’s children should be automatically opened.

can_copy(object)
Returns whether the object’s children can be copied.

2.1. traitsui package 163

TraitsUI 4 User Manual, Release 6.0.0

can_delete(object)
Returns whether the object’s children can be deleted (False for this class).

can_delete_me(object)
Returns whether the object can be deleted (True for this class).

can_insert(object)
Returns whether the object’s children can be inserted (False, meaning that children are appended, for this
class).

can_rename(object)
Returns whether the object’s children can be renamed (False for this class).

can_rename_me(object)
Returns whether the object can be renamed (False for this class).

click(object)
Handles an object being clicked.

dclick(object)
Handles an object being double-clicked.

drop_object(object, dropped_object)
Returns a droppable version of a specified object.

get_add(object)
Returns the list of classes that can be added to the object.

get_children(object)
Gets the object’s children.

get_children_id(object)
Gets the object’s children identifier.

get_drag_object(object)
Returns a draggable version of a specified object.

get_icon(object, is_expanded)
Returns the icon for a specified object.

get_icon_path(object)
Returns the path used to locate an object’s icon.

get_label(object)
Gets the label to display for a specified object.

get_menu(object)
Returns the right-click context menu for an object.

get_name(object)
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

get_view(object)
Gets the view to use when editing an object.

has_children(object)
Returns whether this object has children (True for this class).

select(object)
Handles an object being selected.

set_label(object, label)
Sets the label for a specified object.

164 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

when_children_changed(object, listener, remove)
Sets up or removes a listener for children being changed on a specified object.

when_children_replaced(object, listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

when_label_changed(object, listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

class traitsui.tree_node.ObjectTreeNode(**traits)
Bases: traitsui.tree_node.TreeNode

activated(object)
Handles an object being activated.

allows_children(object)
Returns whether this object can have children.

append_child(object, child)
Appends a child to the object’s children.

can_add(object, add_object)
Returns whether a given object is droppable on the node.

can_auto_close(object)
Returns whether the object’s children should be automatically closed.

can_auto_open(object)
Returns whether the object’s children should be automatically opened.

can_copy(object)
Returns whether the object’s children can be copied.

can_delete(object)
Returns whether the object’s children can be deleted.

can_delete_me(object)
Returns whether the object can be deleted.

can_insert(object)
Returns whether the object’s children can be inserted (vs. appended).

can_rename(object)
Returns whether the object’s children can be renamed.

can_rename_me(object)
Returns whether the object can be renamed.

click(object)
Handles an object being clicked.

confirm_delete(object)
Checks whether a specified object can be deleted.

The following return values are possible:

• True if the object should be deleted with no further prompting.

• False if the object should not be deleted.

• Anything else: Caller should take its default action (which might include prompting the user to con-
firm deletion).

dclick(object)
Handles an object being double-clicked.

2.1. traitsui package 165

TraitsUI 4 User Manual, Release 6.0.0

delete_child(object, index)
Deletes a child at a specified index from the object’s children.

drop_object(object, dropped_object)
Returns a droppable version of a specified object.

get_add(object)
Returns the list of classes that can be added to the object.

get_children(object)
Gets the object’s children.

get_children_id(object)
Gets the object’s children identifier.

get_drag_object(object)
Returns a draggable version of a specified object.

get_icon(object, is_expanded)
Returns the icon for a specified object.

get_icon_path(object)
Returns the path used to locate an object’s icon.

get_label(object)
Gets the label to display for a specified object.

get_menu(object)
Returns the right-click context menu for an object.

get_name(object)
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

get_tooltip(object)
Gets the tooltip to display for a specified object.

get_view(object)
Gets the view to use when editing an object.

has_children(object)
Returns whether the object has children.

insert_child(object, index, child)
Inserts a child into the object’s children.

is_node_for(object)
Returns whether this is the node that should handle a specified object.

select(object)
Handles an object being selected.

set_label(object, label)
Sets the label for a specified object.

when_children_changed(object, listener, remove)
Sets up or removes a listener for children being changed on a specified object.

when_children_replaced(object, listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

when_label_changed(object, listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

166 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.tree_node.TreeNode(**traits)
Bases: traits.has_traits.HasPrivateTraits

Represents a tree node. Used by the tree editor and tree editor factory classes.

activated(object)
Handles an object being activated.

allows_children(object)
Returns whether this object can have children.

append_child(object, child)
Appends a child to the object’s children.

can_add(object, add_object)
Returns whether a given object is droppable on the node.

can_auto_close(object)
Returns whether the object’s children should be automatically closed.

can_auto_open(object)
Returns whether the object’s children should be automatically opened.

can_copy(object)
Returns whether the object’s children can be copied.

can_delete(object)
Returns whether the object’s children can be deleted.

can_delete_me(object)
Returns whether the object can be deleted.

can_insert(object)
Returns whether the object’s children can be inserted (vs. appended).

can_rename(object)
Returns whether the object’s children can be renamed.

can_rename_me(object)
Returns whether the object can be renamed.

click(object)
Handles an object being clicked.

confirm_delete(object)
Checks whether a specified object can be deleted.

The following return values are possible:

• True if the object should be deleted with no further prompting.

• False if the object should not be deleted.

• Anything else: Caller should take its default action (which might include prompting the user to con-
firm deletion).

dclick(object)
Handles an object being double-clicked.

delete_child(object, index)
Deletes a child at a specified index from the object’s children.

drop_object(object, dropped_object)
Returns a droppable version of a specified object.

2.1. traitsui package 167

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

get_add(object)
Returns the list of classes that can be added to the object.

get_background(object)

get_children(object)
Gets the object’s children.

get_children_id(object)
Gets the object’s children identifier.

get_column_labels(object)
Get the labels for any columns that have been defined.

get_drag_object(object)
Returns a draggable version of a specified object.

get_foreground(object)

get_icon(object, is_expanded)
Returns the icon for a specified object.

get_icon_path(object)
Returns the path used to locate an object’s icon.

get_label(object)
Gets the label to display for a specified object.

get_menu(object)
Returns the right-click context menu for an object.

get_name(object)
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

get_tooltip(object)
Gets the tooltip to display for a specified object.

get_view(object)
Gets the view to use when editing an object.

has_children(object)
Returns whether the object has children.

insert_child(object, index, child)
Inserts a child into the object’s children.

is_addable(klass)
Returns whether a specified object class can be added to the node.

is_node_for(object)
Returns whether this is the node that handles a specified object.

select(object)
Handles an object being selected.

set_label(object, label)
Sets the label for a specified object.

when_children_changed(object, listener, remove)
Sets up or removes a listener for children being changed on a specified object.

when_children_replaced(object, listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

168 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

when_column_labels_change(object, listener, remove)
Sets up or removes a listener for the column labels being changed on a specified object.

This will fire when either the list is reassigned or when it is modified. I.e., it listens both to the trait change
event and the trait_items change event. Implement the listener appropriately to handle either case.

when_label_changed(object, listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

class traitsui.tree_node.TreeNodeObject
Bases: traits.has_traits.HasPrivateTraits

Represents the object that corresponds to a tree node.

tno_activated(node)
Handles an object being activated.

tno_allows_children(node)
Returns whether this object allows children.

tno_append_child(node, child)
Appends a child to the object’s children.

tno_can_add(node, add_object)
Returns whether a given object is droppable on the node.

tno_can_auto_close(node)
Returns whether the object’s children should be automatically closed.

tno_can_auto_open(node)
Returns whether the object’s children should be automatically opened.

tno_can_copy(node)
Returns whether the object’s children can be copied.

tno_can_delete(node)
Returns whether the object’s children can be deleted.

tno_can_delete_me(node)
Returns whether the object can be deleted.

tno_can_insert(node)
Returns whether the object’s children can be inserted (vs. appended).

tno_can_rename(node)
Returns whether the object’s children can be renamed.

tno_can_rename_me(node)
Returns whether the object can be renamed.

tno_click(node)
Handles an object being clicked.

tno_confirm_delete(node)
Checks whether a specified object can be deleted.

The following return values are possible:

• True if the object should be deleted with no further prompting.

• False if the object should not be deleted.

• Anything else: Caller should take its default action (which might include prompting the user to con-
firm deletion).

2.1. traitsui package 169

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

tno_dclick(node)
Handles an object being double-clicked.

tno_delete_child(node, index)
Deletes a child at a specified index from the object’s children.

tno_drop_object(node, dropped_object)
Returns a droppable version of a specified object.

tno_get_add(node)
Returns the list of classes that can be added to the object.

tno_get_children(node)
Gets the object’s children.

tno_get_children_id(node)
Gets the object’s children identifier.

tno_get_drag_object(node)
Returns a draggable version of a specified object.

tno_get_icon(node, is_expanded)
Returns the icon for a specified object.

tno_get_icon_path(node)
Returns the path used to locate an object’s icon.

tno_get_label(node)
Gets the label to display for a specified object.

tno_get_menu(node)
Returns the right-click context menu for an object.

tno_get_name(node)
Returns the name to use when adding a new object instance (displayed in the “New” submenu).

tno_get_tooltip(node)
Gets the tooltip to display for a specified object.

tno_get_view(node)
Gets the view to use when editing an object.

tno_has_children(node)
Returns whether this object has children.

tno_insert_child(node, index, child)
Inserts a child into the object’s children.

tno_is_node_for(node)
Returns whether this is the node that should handle a specified object.

tno_select(node)
Handles an object being selected.

tno_set_label(node, label)
Sets the label for a specified object.

tno_when_children_changed(node, listener, remove)
Sets up or removes a listener for children being changed on a specified object.

tno_when_children_replaced(node, listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

170 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

tno_when_label_changed(node, listener, remove)
Sets up or removes a listener for the label being changed on a specified object.

traitsui.ui module

Defines the UI class used to represent an active traits-based user interface.

class traitsui.ui.Dispatcher(method, info, object, method_name)
Bases: object

dispatch()
Dispatches the method.

remove()
Removes the dispatcher.

class traitsui.ui.UI
Bases: traits.has_traits.HasPrivateTraits

Information about the user interface for a View.

add_checked(checked_when, editor)
Adds a conditionally enabled (menu) Editor object to the list of monitored ‘checked_when’ objects.

add_defined(method)
Adds a Handler method to the list of methods to be called once the user interface has been constructed.

add_enabled(enabled_when, editor)
Adds a conditionally enabled Editor object to the list of monitored ‘enabled_when’ objects.

add_visible(visible_when, editor)
Adds a conditionally enabled Editor object to the list of monitored ‘visible_when’ objects.

disposable_traits = ['view_elements', 'info', 'handler', 'context', 'view', 'history', 'key_bindings', 'icon', 'rebuild']

dispose(result=None, abort=False)
Disposes of the contents of a user interface.

do_undoable(action, *args, **kw)
Performs an action that can be undone.

eval_when(when, result=True)
Evaluates an expression in the UI’s context and returns the result.

evaluate(function, *args, **kw_args)
Evaluates a specified function in the UI’s context.

find(include)
Finds the definition of the specified Include object in the current user interface building context.

finish()
Finishes disposing of a user interface.

get_editors(name)
Returns a list of editors for the given trait name.

get_error_controls()
Returns the list of editor error controls contained by the user interface.

get_extended_value(name)
Gets the current value of a specified extended trait name.

2.1. traitsui package 171

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

get_prefs(prefs=None)
Gets the preferences to be saved for the user interface.

get_ui_db(mode=’r’)
Returns a reference to the Traits UI preference database.

key_handler(event, skip=True)
Handles key events.

pop_level(level)
Restores a previously pushed search stack level.

prepare_ui()
Performs all processing that occurs after the user interface is created.

push_level()
Returns the current search stack level.

recyclable_traits = ['_context', '_revert', '_defined', '_visible', '_enabled', '_checked', '_search', '_dispatchers', '_editors', '_names', '_active_group', '_undoable', '_rebuild', '_groups_cache']

recycle()
Recycles the user interface prior to rebuilding it.

reset(destroy=True)
Resets the contents of a user interface.

restore_prefs()
Retrieves and restores any saved user preference information associated with the UI.

route_event(event)
Routes a “hooked” event to the correct handler method.

save_prefs(prefs=None)
Saves any user preference information associated with the UI.

set_prefs(prefs)
Sets the values of user preferences for the UI.

sync_view()
Synchronize context object traits with view editor traits.

traits_init()
Initializes the traits object.

ui(parent, kind)
Creates a user interface from the associated View template object.

traitsui.ui_editor module

Defines the BasicUIEditor class, which allows creating editors that define their function by creating an embedded
Traits UI.

class traitsui.ui_editor.UIEditor(parent, **traits)
Bases: traitsui.editor.Editor

An editor that creates an embedded Traits UI.

dispose()
Disposes of the contents of an editor.

get_error_control()
Returns the editor’s control for indicating error status.

172 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

init(parent)
Finishes initializing the editor by creating the underlying toolkit widget.

init_ui(parent)
Creates the traits UI for the editor.

restore_prefs(prefs)
Restores any saved user preference information associated with the editor.

save_prefs()
Returns any user preference information associated with the editor.

update_editor()
Updates the editor when the object trait changes external to the editor.

traitsui.ui_info module

Defines the UIInfo class used to represent the object and editor content of an active Traits-based user interface.

class traitsui.ui_info.UIInfo
Bases: traits.has_traits.HasPrivateTraits

Represents the object and editor content of an active Traits-based user interface

bind(name, value, id=None)
Binds a name to a value if it is not already bound.

bind_context()
Binds all of the associated context objects as traits of the object.

traitsui.ui_traits module

Defines common traits used within the traits.ui package.

class traitsui.ui_traits.ATheme(value=None, **metadata)
Bases: traits.trait_handlers.TraitType

Defines a trait whose value must be a traits UI Theme or a string that can be converted to one.

default_value = None

info_text = 'a Theme or string that can be used to define one'

validate(object, name, value)
Validates that a specified value is valid for this trait.

class traitsui.ui_traits.StatusItem(value=None, **traits)
Bases: traits.has_traits.HasStrictTraits

class traitsui.ui_traits.ViewStatus(default_value=<traits.trait_handlers.NoDefaultSpecified
object>, **metadata)

Bases: traits.trait_handlers.TraitType

Defines a trait whose value must be a single StatusItem instance or a list of StatusItem instances.

default_value = None

info_text = 'None, a string, a single StatusItem instance, or a list or tuple of strings and/or StatusItem instances'

validate(object, name, value)
Validates that a specified value is valid for this trait.

2.1. traitsui package 173

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits
http://docs.enthought.com/traits/traits_api_reference/trait_handlers.html#traits.trait_handlers.TraitType
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits
http://docs.enthought.com/traits/traits_api_reference/trait_handlers.html#traits.trait_handlers.TraitType

TraitsUI 4 User Manual, Release 6.0.0

traitsui.ui_traits.convert_theme(value, level=3)
Converts a specified value to a Theme if possible.

traitsui.undo module

Defines the manager for Undo and Redo history for Traits user interface support.

class traitsui.undo.AbstractUndoItem
Bases: traits.has_traits.HasPrivateTraits

Abstract base class for undo items.

merge_undo(undo_item)
Merges two undo items if possible.

redo()
Re-does the change.

undo()
Undoes the change.

class traitsui.undo.ListUndoItem
Bases: traitsui.undo.AbstractUndoItem

A change to a list, which can be undone.

merge_undo(undo_item)
Merges two undo items if possible.

redo()
Re-does the change.

undo()
Undoes the change.

class traitsui.undo.UndoHistory
Bases: traits.has_traits.HasStrictTraits

Manages a list of undoable changes.

add(undo_item, extend=False)
Adds an UndoItem to the history.

clear()
Clears the undo history.

extend(undo_item)
Extends the undo history.

If possible the method merges the new UndoItem with the last item in the history; otherwise, it appends
the new item.

redo()
Redoes an operation.

revert()
Reverts all changes made so far and clears the history.

undo()
Undoes an operation.

174 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.undo.UndoHistoryUndoItem
Bases: traitsui.undo.AbstractUndoItem

An undo item for the undo history.

redo()
Re-does the change.

undo()
Undoes the change.

class traitsui.undo.UndoItem
Bases: traitsui.undo.AbstractUndoItem

A change to an object trait, which can be undone.

merge_undo(undo_item)
Merges two undo items if possible.

redo()
Re-does the change.

undo()
Undoes the change.

traitsui.value_tree module

Defines tree node classes and editors for various types of values.

class traitsui.value_tree.ArrayNode
Bases: traitsui.value_tree.TupleNode

A tree node for arrays.

format_value(value)
Returns the formatted version of the value.

class traitsui.value_tree.BoolNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for Boolean values.

class traitsui.value_tree.ClassNode
Bases: traitsui.value_tree.ObjectNode

A tree node for classes.

format_value(value)
Returns the formatted version of the value.

class traitsui.value_tree.ComplexNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for complex number values.

class traitsui.value_tree.DictNode
Bases: traitsui.value_tree.TupleNode

A tree node for dictionaries.

format_value(value)
Returns the formatted version of the value.

2.1. traitsui package 175

TraitsUI 4 User Manual, Release 6.0.0

tno_can_delete(node)
Returns whether the object’s children can be deleted.

tno_get_children(node)
Gets the object’s children.

class traitsui.value_tree.FloatNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for floating point values.

class traitsui.value_tree.FunctionNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for functions

format_value(value)
Returns the formatted version of the value.

class traitsui.value_tree.IntNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for integer values.

class traitsui.value_tree.ListNode
Bases: traitsui.value_tree.TupleNode

A tree node for lists.

format_value(value)
Returns the formatted version of the value.

tno_can_delete(node)
Returns whether the object’s children can be deleted.

tno_can_insert(node)
Returns whether the object’s children can be inserted (vs. appended).

class traitsui.value_tree.MethodNode
Bases: traitsui.value_tree.MultiValueTreeNodeObject

format_value(value)
Returns the formatted version of the value.

tno_get_children(node)
Gets the object’s children.

tno_has_children(node)
Returns whether the object has children.

class traitsui.value_tree.MultiValueTreeNodeObject
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for objects of types that have multiple values.

tno_allows_children(node)
Returns whether this object can have children (True for this class).

tno_has_children(node)
Returns whether the object has children (True for this class).

class traitsui.value_tree.NoneNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for None values.

176 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

class traitsui.value_tree.ObjectNode
Bases: traitsui.value_tree.MultiValueTreeNodeObject

A tree node for objects.

format_value(value)
Returns the formatted version of the value.

tno_get_children(node)
Gets the object’s children.

tno_has_children(node)
Returns whether the object has children.

class traitsui.value_tree.OtherNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for single-value types for which there is not another node type.

class traitsui.value_tree.RootNode
Bases: traitsui.value_tree.MultiValueTreeNodeObject

A root node.

format_value(value)
Returns the formatted version of the value.

tno_get_children(node)
Gets the object’s children.

class traitsui.value_tree.SetNode
Bases: traitsui.value_tree.ListNode

A tree node for sets.

format_value(value)
Returns the formatted version of the value.

class traitsui.value_tree.SingleValueTreeNodeObject
Bases: traitsui.tree_node.TreeNodeObject

A tree node for objects of types that have a single value.

format_value(value)
Returns the formatted version of the value.

node_for(name, value)
Returns the correct node type for a specified value.

tno_allows_children(node)
Returns whether this object can have children (False for this class).

tno_can_copy(node)
Returns whether the object’s children can be copied (True for this class).

tno_can_delete(node)
Returns whether the object’s children can be deleted (False for this class).

tno_can_insert(node)
Returns whether the object’s children can be inserted (False, meaning children are appended, for this class).

tno_can_rename(node)
Returns whether the object’s children can be renamed (False for this class).

2.1. traitsui package 177

TraitsUI 4 User Manual, Release 6.0.0

tno_get_icon(node, is_expanded)
Returns the icon for a specified object.

tno_get_label(node)
Gets the label to display for a specified object.

tno_has_children(node)
Returns whether the object has children (False for this class).

tno_set_label(node, label)
Sets the label for a specified object.

class traitsui.value_tree.StringNode
Bases: traitsui.value_tree.SingleValueTreeNodeObject

A tree node for strings.

format_value(value)
Returns the formatted version of the value.

class traitsui.value_tree.TraitsNode
Bases: traitsui.value_tree.ObjectNode

A tree node for traits.

tno_get_children(node)
Gets the object’s children.

tno_has_children(node)
Returns whether the object has children.

tno_when_children_changed(node, listener, remove)
Sets up or removes a listener for children being changed on a specified object.

tno_when_children_replaced(node, listener, remove)
Sets up or removes a listener for children being replaced on a specified object.

class traitsui.value_tree.TupleNode
Bases: traitsui.value_tree.MultiValueTreeNodeObject

A tree node for tuples.

format_value(value)
Returns the formatted version of the value.

tno_get_children(node)
Gets the object’s children.

tno_has_children(node)
Returns whether the object has children, based on the length of the tuple.

traitsui.value_tree.basic_types()

traitsui.view module

Defines the View class used to represent the structural content of a Traits-based user interface.

class traitsui.view.View(*values, **traits)
Bases: traitsui.view_element.ViewElement

A Traits-based user interface for one or more objects.

178 Chapter 2. TraitsUI 6.0 API Reference

TraitsUI 4 User Manual, Release 6.0.0

The attributes of the View object determine the contents and layout of an attribute-editing window. A View
object contains a set of Group, Item, and Include objects. A View object can be an attribute of an object derived
from HasTraits, or it can be a standalone object.

replace_include(view_elements)
Replaces any items that have an ID with an Include object with the same ID, and puts the object with the
ID into the specified ViewElements object.

set_content(*values)
Sets the content of a view.

ui(context, parent=None, kind=None, view_elements=None, handler=None, id=”, scrollable=None,
args=None)
Creates a UI object, which generates the actual GUI window or panel from a set of view elements.

Parameters

• context (object or dictionary) – A single object or a dictionary of
string/object pairs, whose trait attributes are to be edited. If not specified, the current
object is used.

• parent (window component) – The window parent of the View object’s window

• kind (string) – The kind of window to create. See the AKind trait for details. If kind
is unspecified or None, the kind attribute of the View object is used.

• view_elements (ViewElements object) – The set of Group, Item, and Include
objects contained in the view. Do not use this parameter when calling this method directly.

• handler (Handler object) – A handler object used for event handling in the dialog
box. If None, the default handler for Traits UI is used.

• id (string) – A unique ID for persisting preferences about this user interface, such as
size and position. If not specified, no user preferences are saved.

• scrollable (Boolean) – Indicates whether the dialog box should be scrollable. When
set to True, scroll bars appear on the dialog box if it is not large enough to display all of
the items in the view at one time.

traitsui.view_element module

Defines the abstract ViewElement class that all trait view template items (i.e., View, Group, Item, Include) derive from.

class traitsui.view_element.DefaultViewElement
Bases: traitsui.view_element.ViewElement

A view element that can be used as a default value for traits whose value is a view element.

class traitsui.view_element.ViewElement
Bases: traits.has_traits.HasPrivateTraits

An element of a view.

is_includable()
Returns whether the object is replacable by an Include object.

replace_include(view_elements)
Searches the current object’s content attribute for objects that have an id attribute, and replaces each one
with an Include object with the same id value, and puts the replaced object into the specified ViewElements
object.

2.1. traitsui package 179

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasPrivateTraits

TraitsUI 4 User Manual, Release 6.0.0

Parameters view_elements (ViewElements object) – Object containing Group,
Item, and Include objects

class traitsui.view_element.ViewSubElement
Bases: traitsui.view_element.ViewElement

Abstract class representing elements that can be contained in a view.

traitsui.view_elements module

Define the ViewElements class, which is used to define a (typically class-based) hierarchical name space of related
ViewElement objects.

Normally there is a ViewElements object associated with each Traits-based class, which contains all of the ViewEle-
ment objects associated with the class. The ViewElements object is also linked to the ViewElements objects of its
associated class’s parent classes.

class traitsui.view_elements.SearchStackItem
Bases: traits.has_traits.HasStrictTraits

class traitsui.view_elements.ViewElements
Bases: traits.has_traits.HasStrictTraits

Defines a hierarchical name space of related ViewElement objects.

filter_by(klass=None)
Returns a sorted list of all names accessible from the ViewElements object that are of a specified (ViewEle-
ment) type.

find(name, stack=None)
Finds a specified ViewElement within the specified (optional) search context.

2.1.3 Module contents

180 Chapter 2. TraitsUI 6.0 API Reference

http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits
http://docs.enthought.com/traits/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits

CHAPTER 3

TraitsUI 6.0 Tutorials

3.1 Writing a graphical application for scientific programming using
TraitsUI 6.0

A step by step guide for a non-programmer

Author Gael Varoquaux

Date 2018-04-12

License BSD

Building interactive Graphical User Interfaces (GUIs) is a hard problem, especially for somebody who has not had
training in IT. TraitsUI is a python module that provides a great answer to this problem. I have found that I am
incredibly productive when creating graphical application using traitsUI. However I had to learn a few new concepts
and would like to lay them down together in order to make it easier for others to follow my footsteps.

This document is intended to help a non-programmer to use traits and traitsUI to write an interactive graphical applica-
tion. The reader is assumed to have some basic python scripting knowledge (see ref1 for a basic introduction). Knowl-
edge of numpy/scipy2 helps understanding the data processing aspects of the examples, but may not be paramount.
Some examples rely on matplotlib3 . This document is not a replacement for user manuals and references of the
different packages (traitsUI4, scipy, matplotlib). It provides a “cookbook” approach, and not a reference.

This tutorial provides step-by-step guide to building a medium-size application. The example chosen is an application
used to do control of a camera, analysis of the retrieved data and display of the results. This tutorial focuses on
building the general structure and flow-control of the application, and on the aspects specific to traitsUI programming.
Interfacing with the hardware or processing the data is left aside. The tutorial progressively introduces the tools
used, and in the end presents the skeleton of a real application that has been developed for real-time controlling of
an experiment, monitoring through a camera, and processing the data. The tutorial goes into more and more intricate
details that are necessary to build the final application. Each section is in itself independent of the following ones. The
complete beginner trying to use this as an introduction should not expect to understand all the details in a first pass.

1 python tutorial: http://docs.python.org/tut/tut.html
2 The scipy website: http://www.scipy.org
3 The matplotlib website: http://matplotlib.sourceforge.net
4 The traits and traitsUI user guide: http://code.enthought.com/traits

181

http://docs.python.org/tut/tut.html
http://www.scipy.org
http://matplotlib.sourceforge.net
http://code.enthought.com/traits

TraitsUI 4 User Manual, Release 6.0.0

The author’s experience while working on several projects in various physics labs is that code tends to be created in
an ‘organic’ way, by different people with various levels of qualification in computer development, and that it rapidly
decays to a disorganized and hard-to-maintain code base. This tutorial tries to prevent this by building an application
shaped for modularity and readability.

3.1.1 From objects to dialogs using traitsUI

Creating user interfaces directly through a toolkit is a time-consuming process. It is also a process that does not
integrate well in the scientific-computing work-flow, as, during the elaboration of algorithms and data-flow, the objects
that are represented in the GUI are likely to change often.

Visual computing, where the programmer creates first a graphical interface and then writes the callbacks of the graph-
ical objects, gives rise to a slow development cycle, as the work-flow is centered on the GUI, and not on the code.

TraitsUI provides a beautiful answer to this problem by building graphical representations of an object. Traits and
TraitsUI have their own manuals (http://code.enthought.com/traits/) and the reader is encouraged to refer to these for
more information.

We will use TraitsUI for all our GUIs. This forces us to store all the data and parameters in objects, which is good
programming style. The GUI thus reflects the structure of the code, which makes it easier to understand and extend.

In this section we will focus on creating dialogs that allow the user to input parameters graphically in the program.

Object-oriented programming

Software engineering is a difficult field. As programs, grow they become harder and harder to grasp for the developer.
This problem is not new and has sometimes been know as the “tar pit”. Many attempts have been made to mitigate the
difficulties. Most often they consist in finding useful abstractions that allow the developer to manipulate larger ideas,
rather than their software implementation.

Code re-use is paramount for good software development. It reduces the number of code-lines required to read and
understand and allows to identify large operations in the code. Functions and procedures have been invented to avoid
copy-and-pasting code, and hide the low-level details of an operation.

Object-oriented programming allows yet more modularity and abstraction.

Objects, attributes and methods

Suppose you want your program to manipulate geometric objects. You can teach the computer that a point is a set of
3 numbers, you can teach it how to rotate that point along a given axis. Now you want to use spheres too. With a bit
more work your program has functions to create points, spheres, etc. It knows how to rotate them, to mirror them, to
scale them. So in pure procedural programming you will have procedures to rotate, scale, mirror, each one of your
objects. If you want to rotate an object you will first have to find its type, then apply the right procedure to rotate it.

Object-oriented programming introduces a new abstraction: the object. It consists of both data (our 3 numbers, in the
case of a point), and procedures that use and modify this data (e.g., rotations). The data entries are called “attributes”
of the object and the procedures “methods”. Thus with object oriented programming an object “knows” how to be
rotated.

A point object could be implemented in python with:

code snippet #0

from numpy import cos, sin

class Point(object):

182 Chapter 3. TraitsUI 6.0 Tutorials

http://code.enthought.com/traits/
../_static/code_block0.py

TraitsUI 4 User Manual, Release 6.0.0

""" 3D Point objects """
x = 0.
y = 0.
z = 0.

def rotate_z(self, theta):
""" rotate the point around the Z axis """
xtemp = cos(theta) * self.x + sin(theta) * self.y
ytemp = -sin(theta) * self.x + cos(theta) * self.y
self.x = xtemp
self.y = ytemp

This code creates a Point class. Points objects can be created as instances of the Point class:

>>> from numpy import pi
>>> p = Point()
>>> p.x = 1
>>> p.rotate_z(pi)
>>> p.x
-1.0
>>> p.y
1.2246467991473532e-16

When manipulating objects, the developer does not need to know the internal details of their procedures. As long as
the object has a rotate method, the developer knows how to rotate it.

Note: Beginners often use objects as structures: entities with several data fields useful to pass data around
in a program. Objects are much more then that: they have methods. They are ‘active’ data structures that
know how to modify themselves. Part of the point of object-oriented programming is that the object is
responsible for modifying itself through its methods. The object therefore takes care of its internal logic
and the consistency between its attributes.

In python, dictionaries make great structures and are more suited for such a use than objects.

Classes and inheritance

Suppose you have already created a Point class that tells your program what a point is, but that you also want some
points to have a color. Instead of copy-and-pasting the Point class and adding a color attribute, you can define a new
class ColoredPoint that inherits all of the Point class’s methods and attributes:

class ColoredPoint(Point):
""" Colored 3D point """
color = "white"

You do not have to implement rotation for the ColoredPoint class as it has been inherited from the Point class. This is
one of the huge gains of object-oriented programming: objects are organized in classes and sub-classes, and method
to manipulate objects are derived from the objects parent-ship: a ColoredPoint is only a special case of Point. This
proves very handy on large projects.

Note: To stress the differences between classes and their instances (objects), classes are usually named
with capital letters, and objects only with lower case letters.

An object and its representation

Objects are code entities that can be easily pictured by the developer. The TraitsUI python module allows the user to
edit objects attributes with dialogs that form a graphical representation of the object.

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 183

TraitsUI 4 User Manual, Release 6.0.0

In our example application, each process or experimental device is represented in the code as an object. These objects
all inherit from the HasTraits, class which supports creating graphical representations of attributes. To be able to build
the dialog, the HasTraits class enforces that the types of all the attributes are specified in the class definition.

The HasTraits objects have a configure_traits() method that brings up a dialog to edit the objects’ attributes specified
in its class definition.

Here we define a camera object (which, in our real world example, is a camera interfaced to python through the ctypes5

module), and show how to open a dialog to edit its properties :

code snippet #1

from traits.api import *
from traitsui.api import *

class Camera(HasTraits):
""" Camera object """

gain = Enum(1, 2, 3,
desc="the gain index of the camera",
label="gain",)

exposure = CInt(10,
desc="the exposure time, in ms",
label="Exposure",)

def capture(self):
""" Captures an image on the camera and returns it """
print "capturing an image at %i ms exposure, gain: %i" % (

self.exposure, self.gain)

if __name__ == "__main__":
camera = Camera()
camera.configure_traits()
camera.capture()

The camera.configure_traits() call in the above example opens a dialog that allows the user to modify the camera
object’s attributes:

This dialog forms a graphical representation of our camera object. We will see that it can be embedded in GUI panels
to build more complex GUIs that allow us to control many objects.

We will build our application around objects and their graphical representation, as this mapping of the code to the GUI
helps the developer to understand the code.

5 ctypes: http://starship.python.net/crew/theller/ctypes/

184 Chapter 3. TraitsUI 6.0 Tutorials

../_static/code_block1.py
http://starship.python.net/crew/theller/ctypes/

TraitsUI 4 User Manual, Release 6.0.0

Displaying several objects in the same panel

We now know how to build a dialog from objects. If we want to build a complex application we are likely to have
several objects, for instance one corresponding to the camera we want to control, and one describing the experiment
that the camera monitors. We do not want to have to open a new dialog per object: this would force us to describe the
GUI in terms of graphical objects, and not structural objects. We want the GUI to be a natural representation of our
objects, and we want the Traits module to take care of that.

The solution is to create a container object, that has as attributes the objects we want to represent. Playing with the
View attribute of the object, we can control how the representation generated by Traits looks like (see the TraitsUI
manual):

code snippet #2

from traits.api import *
from traitsui.api import *

class Camera(HasTraits):
gain = Enum(1, 2, 3,)
exposure = CInt(10, label="Exposure",)

class TextDisplay(HasTraits):
string = String()

view= View(Item('string', show_label=False, springy=True, style='custom
→˓'))

class Container(HasTraits):
camera = Instance(Camera)
display = Instance(TextDisplay)

view = View(
Item('camera', style='custom', show_label=False,),
Item('display', style='custom', show_label=False,),

)

container = Container(camera=Camera(), display=TextDisplay())
container.configure_traits()

The call to configure_traits() creates the following dialog, with the representation of the Camera object created is the
last example on top, and the Display object below it:

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 185

../_static/container.py

TraitsUI 4 User Manual, Release 6.0.0

The View attribute of the container object has been tweaked to get the representation we are interested in: traitsUI
is told to display the camera item with a ‘custom’ style, which instructs it to display the representation of the object
inside the current panel. The ‘show_label’ argument is set to False as we do not want the name of the displayed object
(‘camera’, for instance) to appear in the dialog. See the traitsUI manual for more details on this powerful feature.

The camera and display objects are created during the call to the creator of the container object, and passed as its
attributes immediately: “container = Container(camera=Camera(), display=TextDisplay())”

Writing a “graphical script”

If you want to create an application that has a very linear flow, popping up dialogs when user input is required, like
a “setup wizard” often used to install programs, you already have all the tools to do it. You can use object oriented
programming to write your program, and call the objects configure_traits method each time you need user input. This
might be an easy way to modify an existing script to make it more user friendly.

The following section will focus on making interactive programs, where the user uses the graphical interface to interact
with it in a continuous way.

3.1.2 From graphical to interactive

In an interactive application, the program responds to user interaction. This requires a slight paradigm shift in our
programming methods.

Object-oriented GUIs and event loops

In a GUI application, the order in which the different parts of the program are executed is imposed by the user, unlike
in a numerical algorithm, for instance, where the developer chooses the order of execution of his program. An event
loop allows the programmer to develop an application in which each user action triggers an event, by stacking the user
created events on a queue, and processing them in the order in which the appeared.

A complex GUI is made of a large numbers of graphical elements, called widgets (e.g., text boxes, check boxes,
buttons, menus). Each of these widgets has specific behaviors associated with user interaction (modifying the content
of a text box, clicking on a button, opening a menu). It is natural to use objects to represent the widgets, with their
behavior being set in the object’s methods.

Dialogs populated with widgets are automatically created by traitsUI in the configure_traits() call. traitsUI allow the
developer to not worry about widgets, but to deal only with objects and their attributes. This is a fabulous gain as the
widgets no longer appear in the code, but only the attributes they are associated to.

A HasTraits object has an edit_traits() method that creates a graphical panel to edit its attributes. This method creates
and returns the panel, but does not start its event loop. The panel is not yet “alive”, unlike with the configure_traits()
method. Traits uses the wxWidget toolkit by default to create its widget. They can be turned live and displayed by
starting a wx application, and its main loop (ie event loop in wx speech).

code snippet #3

from traits.api import *
import wx

class Counter(HasTraits):
value = Int()

Counter().edit_traits()
wx.PySimpleApp().MainLoop()

186 Chapter 3. TraitsUI 6.0 Tutorials

../_static/event_loop.py

TraitsUI 4 User Manual, Release 6.0.0

The Counter().edit_traits() line creates a counter object and its representation, a dialog with one integer represented.
However it does not display it until a wx application is created, and its main loop is started.

Usually it is not necessary to create the wx application yourself, and to start its main loop, traits will do all this for you
when the .configure_traits() method is called.

Reactive programming

When the event loop is started, the program flow is no longer simply controlled by the code: the control is passed on
to the event loop, and it processes events, until the user closes the GUI, and the event loop returns to the code.

Interactions with objects generate events, and these events can be associated to callbacks, ie functions or methods
processing the event. In a GUI, callbacks created by user-generated events are placed on an “event stack”. The event
loop processes each call on the event queue one after the other, thus emptying the event queue. The flow of the program
is still sequential (two code blocks never run at the same time in an event loop), but the execution order is chosen by
the user, and not by the developer.

Defining callbacks for the modification of an attribute foo of a HasTraits object can be done be creating a method
called _foo_changed(). Here is an example of a dialog with two textboxes, input and output. Each time input is
modified, is content is duplicated to output.

code snippet #4

from traits.api import *

class EchoBox(HasTraits):
input = Str()
output = Str()

def _input_changed(self):
self.output = self.input

EchoBox().configure_traits()

Events that do not correspond to a modification of an attribute can be generated with a Button traits. The callback is
then called _foo_fired(). Here is an example of an interactive traitsUI application using a button:

code snippet #5

from traits.api import *
from traitsui.api import View, Item, ButtonEditor

class Counter(HasTraits):
value = Int()
add_one = Button()

def _add_one_fired(self):
self.value +=1

view = View('value', Item('add_one', show_label=False))

Counter().configure_traits()

Clicking on the button adds the _add_one_fired() method to the event queue, and this method gets executed as soon as
the GUI is ready to handle it. Most of the time that is almost immediately.

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 187

../_static/echo_box.py
../_static/interactive.py

TraitsUI 4 User Manual, Release 6.0.0

This programming pattern is called reactive programming: the objects react to the changes made to their attributes. In
complex programs where the order of execution is hard to figure out, and bound to change, like some interactive data
processing application, this pattern is extremely efficient.

Using Button traits and a clever set of objects interacting with each others, complex interactive applications can be
built. These applications are governed by the events generated by the user, in contrast to script-like applications (batch
programming). Executing a long operation in the event loop blocks the reactions of the user-interface, as other events
callbacks are not processed as long as the long operation is not finished. In the next section we will see how we can
execute several operations in the same time.

3.1.3 Breaking the flow in multiple threads

What are threads ?

A standard python program executes in a sequential way. Consider the following code snippet :

do_a()
do_b()
do_c()

do_b() is not called until do_a() is finished. Even in event loops everything is sequential. In some situation this can
be very limiting. Suppose we want to capture an image from a camera and that it is a very lengthy operation. Suppose
also that no other operation in our program requires the capture to be complete. We would like to have a different
“timeline” in which the camera capture instructions can happen in a sequential way, while the rest of the program
continues in parallel.

Threads are the solution to this problem: a thread is a portion of a program that can run concurrently with other
portions of the program.

Programming with threads is difficult as instructions are no longer executed in the order they are specified and the
output of a program can vary from a run to another, depending on subtle timing issues. These problems are known as
“race conditions” and to minimize them you should avoid accessing the same objects in different threads. Indeed if
two different threads are modifying the same object at the same time, unexpected things can happen.

Threads in python

In python a thread can be implemented with a Thread object, from the threading6 module. To create your own
execution thread, subclass the Thread object and put the code that you want to run in a separate thread in its run
method. You can start your thread using its start method:

code snippet #6

6 threading: http://docs.python.org/lib/module-threading.html

188 Chapter 3. TraitsUI 6.0 Tutorials

../_static/thread_example.py
http://docs.python.org/lib/module-threading.html

TraitsUI 4 User Manual, Release 6.0.0

from threading import Thread
from time import sleep

class MyThread(Thread):
def run(self):

sleep(2)
print "MyThread done"

my_thread = MyThread()

my_thread.start()
print "Main thread done"

The above code yields the following output:

Main thread done
MyThread done

Getting threads and the GUI event loop to play nice

Suppose you have a long-running job in a TraitsUI application. If you implement this job as an event placed on the
event loop stack, it is going to freeze the event loop while running, and thus freeze the UI, as events will accumulate on
the stack, but will not be processed as long as the long-running job is not done (remember, the event loop is sequential).
To keep the UI responsive, a thread is the natural answer.

Most likely you will want to display the results of your long-running job on the GUI. However, as usual with threads,
one has to be careful not to trigger race-conditions. Naively manipulating the GUI objects in your thread will lead to
race conditions, and unpredictable crash: suppose the GUI was repainting itself (due to a window move, for instance)
when you modify it.

In a wxPython application, if you start a thread, GUI event will still be processed by the GUI event loop. To avoid
collisions between your thread and the event loop, the proper way of modifying a GUI object is to insert the modifica-
tions in the event loop, using the GUI.invoke_later() call. That way the GUI will apply your instructions when it has
time.

Recent versions of the TraitsUI module (post October 2006) propagate the changes you make to a HasTraits object
to its representation in a thread-safe way. However it is important to have in mind that modifying an object with a
graphical representation is likely to trigger race-conditions as it might be modified by the graphical toolkit while you
are accessing it. Here is an example of code inserting the modification to traits objects by hand in the event loop:

code snippet #7

from threading import Thread
from time import sleep
from traits.api import *
from traitsui.api import View, Item, ButtonEditor

class TextDisplay(HasTraits):
string = String()

view= View(Item('string',show_label=False, springy=True, style='custom'
→˓))

class CaptureThread(Thread):
def run(self):

self.display.string = 'Camera started\n' + self.display.string

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 189

../_static/traits_thread.py

TraitsUI 4 User Manual, Release 6.0.0

n_img = 0
while not self.wants_abort:

sleep(.5)
n_img += 1
self.display.string = '%d image captured\n' % n_img \

+ self.display.string
self.display.string = 'Camera stopped\n' + self.display.string

class Camera(HasTraits):
start_stop_capture = Button()
display = Instance(TextDisplay)
capture_thread = Instance(CaptureThread)

view = View(Item('start_stop_capture', show_label=False))

def _start_stop_capture_fired(self):
if self.capture_thread and self.capture_thread.isAlive():

self.capture_thread.wants_abort = True
else:

self.capture_thread = CaptureThread()
self.capture_thread.wants_abort = False
self.capture_thread.display = self.display
self.capture_thread.start()

class MainWindow(HasTraits):
display = Instance(TextDisplay, ())

camera = Instance(Camera)

def _camera_default(self):
return Camera(display=self.display)

view = View('display', 'camera', style="custom", resizable=True)

if __name__ == '__main__':
MainWindow().configure_traits()

This creates an application with a button that starts or stop a continuous camera acquisition loop.

When the “Start stop capture” button is pressed the _start_stop_capture_fired method is called. It checks to see if a
CaptureThread is running or not. If none is running, it starts a new one. If one is running, it sets its wants_abort
attribute to true.

190 Chapter 3. TraitsUI 6.0 Tutorials

TraitsUI 4 User Manual, Release 6.0.0

The thread checks every half a second to see if its attribute wants_abort has been set to true. If this is the case, it
aborts. This is a simple way of ending the thread through a GUI event.

Using different threads lets the operations avoid blocking the user interface, while also staying responsive to other
events. In the real-world application that serves as the basis of this tutorial, there are 2 threads and a GUI event loop.

The first thread is an acquisition loop, during which the program loops, waiting for a image to be captured on the
camera (the camera is controlled by external signals). Once the image is captured and transfered to the computer, the
acquisition thread saves it to the disk and spawns a thread to process the data, then returns to waiting for new data
while the processing thread processes the data. Once the processing thread is done, it displays its results (by inserting
the display events in the GUI event loop) and dies. The acquisition thread refuses to spawn a new processing thread if
there still is one running. This makes sure that data is never lost, no matter how long the processing might be.

There are thus up to 3 set of instructions running concurrently: the GUI event loop, responding to user-generated
events, the acquisition loop, responding to hardware-generated events, and the processing jobs, doing the numerical
intensive work.

In the next section we are going to see how to add a home-made element to traits, in order to add new possibilities to
our application.

3.1.4 Extending TraitsUI: Adding a matplotlib figure to our application

This section gives a few guidelines on how to build your own traits editor. A traits editor is the view associated with
a trait that allows the user to graphically edit its value. We can twist a bit the notion and simply use it to graphically
represent the attribute. This section involves a bit of wxPython code that may be hard to understand if you do not know
wxPython, but it will bring a lot of power and flexibility to how you use traits. The reason it appears in this tutorial is
that I wanted to insert a matplotlib in my traitsUI application. It is not necessary to fully understand the code of this
section to be able to read on.

I should stress that there already exists a plotting module that provides traits editors for plotting, and that is very well
integrated with traits: chaco7.

Making a traits editor from a MatPlotLib plot

To use traits, the developer does not need to know its internals. However traits does not provide an editor for every
need. If we want to insert a powerful tool for plotting we have to get our hands a bit dirty and create our own traits
editor.

This involves some wxPython coding, as we need to translate a wxPython object to a traits editor by providing the
corresponding API (i.e. the standard way of building a traits editor), so that the traits framework will know how to
create the editor.

Traits editor are created by an editor factory that instantiates an editor class and passes it the object that the editor
represents in its value attribute. It calls the editor init() method to create the wx widget. Here we create a wx figure
canvas from a matplotlib figure using the matplotlib wx backend. Instead of displaying this widget, we set its control
as the control attribute of the editor. TraitsUI takes care of displaying and positioning the editor.

code snippet #8

import wx

import matplotlib
We want matplotlib to use a wxPython backend
matplotlib.use('WXAgg')

7 chaco: http://code.enthought.com/chaco/

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 191

../_static/mpl_figure_editor.py
http://code.enthought.com/chaco/

TraitsUI 4 User Manual, Release 6.0.0

from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as
→˓FigureCanvas
from matplotlib.figure import Figure
from matplotlib.backends.backend_wx import NavigationToolbar2Wx

from traits.api import Any, Instance
from traitsui.wx.editor import Editor
from traitsui.wx.basic_editor_factory import BasicEditorFactory

class _MPLFigureEditor(Editor):

scrollable = True

def init(self, parent):
self.control = self._create_canvas(parent)
self.set_tooltip()

def update_editor(self):
pass

def _create_canvas(self, parent):
""" Create the MPL canvas. """
The panel lets us add additional controls.
panel = wx.Panel(parent, -1, style=wx.CLIP_CHILDREN)
sizer = wx.BoxSizer(wx.VERTICAL)
panel.SetSizer(sizer)
matplotlib commands to create a canvas
mpl_control = FigureCanvas(panel, -1, self.value)
sizer.Add(mpl_control, 1, wx.LEFT | wx.TOP | wx.GROW)
toolbar = NavigationToolbar2Wx(mpl_control)
sizer.Add(toolbar, 0, wx.EXPAND)
self.value.canvas.SetMinSize((10,10))
return panel

class MPLFigureEditor(BasicEditorFactory):

klass = _MPLFigureEditor

if __name__ == "__main__":
Create a window to demo the editor
from traits.api import HasTraits
from traitsui.api import View, Item
from numpy import sin, cos, linspace, pi

class Test(HasTraits):

figure = Instance(Figure, ())

view = View(Item('figure', editor=MPLFigureEditor(),
show_label=False),

width=400,
height=300,
resizable=True)

def __init__(self):
super(Test, self).__init__()
axes = self.figure.add_subplot(111)

192 Chapter 3. TraitsUI 6.0 Tutorials

TraitsUI 4 User Manual, Release 6.0.0

t = linspace(0, 2*pi, 200)
axes.plot(sin(t)*(1+0.5*cos(11*t)), cos(t)*(1+0.5*cos(11*t)))

Test().configure_traits()

This code first creates a traitsUI editor for a matplotlib figure, and then a small dialog to illustrate how it works:

The matplotlib figure traits editor created in the above example can be imported in a traitsUI application and combined
with the power of traits. This editor allows to insert a matplotlib figure in a traitsUI dialog. It can be modified using
reactive programming, as demonstrated in section 3 of this tutorial. However, once the dialog is up and running, you
have to call self.figure.canvas.draw() to update the canvas if you made modifications to the figure. The matplotlib user
guide3 details how this object can be used for plotting.

3.1.5 Putting it all together: a sample application

The real world problem that motivated the writing of this tutorial is an application that retrieves data from a camera,
processes it and displays results and controls to the user. We now have all the tools to build such an application.
This section gives the code of a skeleton of this application. This application actually controls a camera on a physics
experiment (Bose-Einstein condensation), at the university of Toronto.

The reason I am providing this code is to give an example to study of how a full-blown application can be built. This
code can be found in the tutorial’s zip file (it is the file application.py).

• The camera will be built as an object. Its real attributes (exposure time, gain. . .) will be represented as the
object’s attributes, and exposed through traitsUI.

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 193

http://gael-varoquaux.info/computers/traits_tutorial/traits_tutorial.zip

TraitsUI 4 User Manual, Release 6.0.0

• The continuous acquisition/processing/user-interaction will be handled by appropriate threads, as discussed in
section 2.3.

• The plotting of the results will be done through the MPLWidget object.

The imports

The MPLFigureEditor is imported from the last example.

from threading import Thread
from time import sleep
from traits.api import *
from traitsui.api import View, Item, Group, HSplit, Handler
from traitsui.menu import NoButtons
from mpl_figure_editor import MPLFigureEditor
from matplotlib.figure import Figure
from scipy import *
import wx

User interface objects

These objects store information for the program to interact with the user via traitsUI.

class Experiment(HasTraits):
""" Object that contains the parameters that control the experiment,
modified by the user.
"""
width = Float(30, label="Width", desc="width of the cloud")
x = Float(50, label="X", desc="X position of the center")
y = Float(50, label="Y", desc="Y position of the center")

class Results(HasTraits):
""" Object used to display the results.
"""
width = Float(30, label="Width", desc="width of the cloud")
x = Float(50, label="X", desc="X position of the center")
y = Float(50, label="Y", desc="Y position of the center")

view = View(Item('width', style='readonly'),
Item('x', style='readonly'),
Item('y', style='readonly'),

)

The camera object also is a real object, and not only a data structure: it has a method to acquire an image (or in our
case simulate acquiring), using its attributes as parameters for the acquisition.

class Camera(HasTraits):
""" Camera objects. Implements both the camera parameters controls, and
the picture acquisition.
"""
exposure = Float(1, label="Exposure", desc="exposure, in ms")
gain = Enum(1, 2, 3, label="Gain", desc="gain")

def acquire(self, experiment):
X, Y = indices((100, 100))
Z = exp(-((X-experiment.x)**2+(Y-experiment.y)**2)/experiment.

→˓width**2)

194 Chapter 3. TraitsUI 6.0 Tutorials

TraitsUI 4 User Manual, Release 6.0.0

Z += 1-2*rand(100,100)
Z *= self.exposure
Z[Z>2] = 2
Z = Z**self.gain
return(Z)

Threads and flow control

There are three threads in this application:

• The GUI event loop, the only thread running at the start of the program.

• The acquisition thread, started through the GUI. This thread is an infinite loop that waits for the camera to be
triggered, retrieves the images, displays them, and spawns the processing thread for each image received.

• The processing thread, started by the acquisition thread. This thread is responsible for the numerical intensive
work of the application. It processes the data and displays the results. It dies when it is done. One processing
thread runs per shot acquired on the camera, but to avoid accumulation of threads in the case that the processing
takes longer than the time lapse between two images, the acquisition thread checks that the processing thread is
done before spawning a new one.

def process(image, results_obj):
""" Function called to do the processing """
X, Y = indices(image.shape)
x = sum(X*image)/sum(image)
y = sum(Y*image)/sum(image)
width = sqrt(abs(sum(((X-x)**2+(Y-y)**2)*image)/sum(image)))
results_obj.x = x
results_obj.y = y
results_obj.width = width

class AcquisitionThread(Thread):
""" Acquisition loop. This is the worker thread that retrieves images
from the camera, displays them, and spawns the processing job.
"""
wants_abort = False

def process(self, image):
""" Spawns the processing job. """
try:

if self.processing_job.isAlive():
self.display("Processing too slow")
return

except AttributeError:
pass

self.processing_job = Thread(target=process, args=(image,
self.results))

self.processing_job.start()

def run(self):
""" Runs the acquisition loop. """
self.display('Camera started')
n_img = 0
while not self.wants_abort:

n_img += 1
img =self.acquire(self.experiment)
self.display('%d image captured' % n_img)

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 195

TraitsUI 4 User Manual, Release 6.0.0

self.image_show(img)
self.process(img)
sleep(1)

self.display('Camera stopped')

The GUI elements

The GUI of this application is separated in two (and thus created by a sub-class of SplitApplicationWindow).

On the left a plotting area, made of an MPL figure and its editor, displays the images acquired by the camera.

On the right a panel hosts the TraitsUI representation of a ControlPanel object. This object is mainly a container
for our other objects, but it also has an Button for starting or stopping the acquisition, and a string (represented by a
textbox) to display information on the acquisition process. The view attribute is tweaked to produce a pleasant and
usable dialog. Tabs are used to help the display to be light and clear.

class ControlPanel(HasTraits):
""" This object is the core of the traitsUI interface. Its view is
the right panel of the application, and it hosts the method for
interaction between the objects and the GUI.
"""
experiment = Instance(Experiment, ())
camera = Instance(Camera, ())
figure = Instance(Figure)
results = Instance(Results, ())
start_stop_acquisition = Button("Start/Stop acquisition")
results_string = String()
acquisition_thread = Instance(AcquisitionThread)
view = View(Group(

Group(
Item('start_stop_acquisition', show_label=False),
Item('results_string',show_label=False,

springy=True, style='custom'),
label="Control", dock='tab',),

Group(
Group(

Item('experiment', style='custom', show_
→˓label=False),

label="Input",),
Group(

Item('results', style='custom', show_
→˓label=False),

label="Results",),
label='Experiment', dock="tab"),

Item('camera', style='custom', show_label=False, dock="tab"),
layout='tabbed'),
)

def _start_stop_acquisition_fired(self):
""" Callback of the "start stop acquisition" button. This starts
the acquisition thread, or kills it.
"""
if self.acquisition_thread and self.acquisition_thread.isAlive():

self.acquisition_thread.wants_abort = True
else:

self.acquisition_thread = AcquisitionThread()
self.acquisition_thread.display = self.add_line

196 Chapter 3. TraitsUI 6.0 Tutorials

TraitsUI 4 User Manual, Release 6.0.0

self.acquisition_thread.acquire = self.camera.acquire
self.acquisition_thread.experiment = self.experiment
self.acquisition_thread.image_show = self.image_show
self.acquisition_thread.results = self.results
self.acquisition_thread.start()

def add_line(self, string):
""" Adds a line to the textbox display.
"""
self.results_string = (string + "\n" + self.results_string)[0:1000]

def image_show(self, image):
""" Plots an image on the canvas in a thread safe way.
"""
self.figure.axes[0].images=[]
self.figure.axes[0].imshow(image, aspect='auto')
wx.CallAfter(self.figure.canvas.draw)

class MainWindowHandler(Handler):
def close(self, info, is_OK):

if (info.object.panel.acquisition_thread
and info.object.panel.acquisition_thread.isAlive()):
info.object.panel.acquisition_thread.wants_abort = True
while info.object.panel.acquisition_thread.isAlive():

sleep(0.1)
wx.Yield()

return True

class MainWindow(HasTraits):
""" The main window, here go the instructions to create and destroy the

→˓application. """
figure = Instance(Figure)

panel = Instance(ControlPanel)

def _figure_default(self):
figure = Figure()
figure.add_axes([0.05, 0.04, 0.9, 0.92])
return figure

def _panel_default(self):
return ControlPanel(figure=self.figure)

view = View(HSplit(Item('figure', editor=MPLFigureEditor(),
dock='vertical'),

Item('panel', style="custom"),
show_labels=False,
),

resizable=True,
height=0.75, width=0.75,
handler=MainWindowHandler(),
buttons=NoButtons)

if __name__ == '__main__':
MainWindow().configure_traits()

When the acquisition loop is created and running, the mock camera object produces noisy gaussian images, and the
processing code estimates the parameters of the gaussian.

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 197

TraitsUI 4 User Manual, Release 6.0.0

Here are screenshots of the three different tabs of the application:

198 Chapter 3. TraitsUI 6.0 Tutorials

TraitsUI 4 User Manual, Release 6.0.0

Conclusion

I have summarized here all what most scientists need to learn in order to be able to start building applications with
traitsUI. Using the traitsUI module to its full power requires you to move away from the procedural type of program-
ming most scientists are used to, and think more in terms of objects and flow of information and control between
them. I have found that this paradigm shift, although a bit hard, has been incredibly rewarding in terms of my own
productivity and my ability to write compact and readable code.

Good luck!

Acknowledgments

I would like to thank the people on the enthought-dev mailing-list, especially Prabhu Ramachandran and David Morrill,
for all the help they gave me, and Janet Swisher for reviewing this document. Big thanks go to enthought for developing
the traits and traitsUI modules, and making them open-source. Finally the python, the numpy, and the matplotlib
community deserve many thanks for both writing such great software, and being so helpful on the mailing lists.

References

3.1. Writing a graphical application for scientific programming using TraitsUI 6.0 199

TraitsUI 4 User Manual, Release 6.0.0

200 Chapter 3. TraitsUI 6.0 Tutorials

CHAPTER 4

TraitsUI 6.0 Demos

This section contains links to a number of TraitsUI demos.

Warning: Some of the examples in this section may be out of date. We are in the process of updating them to the
latest version of TraitsUI.

4.1 Standard Editors

• BooleanEditor

• ButtonEditor

• CSVListEditor

• CheckListEditor

• CheckListEditor (simple)

• CodeEditor

• ColorEditor

• CompoundEditor

• DirectoryEditor

• EnumEditor

• FileEditor

• FontEditor

• HTMLEditor

• ImageEnumEditor

• InstanceEditor

201

https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/BooleanEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/ButtonEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/CSVListEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/CheckListEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/CheckListEditor_simple_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/CodeEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/ColorEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/CompoundEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/DirectoryEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/EnumEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/FileEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/FontEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/HTMLEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/ImageEnumEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/InstanceEditor_demo.py

TraitsUI 4 User Manual, Release 6.0.0

• ListEditor

• RGBColorEditor

• RangeEditor

• SetEditor

• TableEditor

• TextEditor

• TitleEditor

• TreeEditor

• TupleEditor

4.2 Advanced Demos

• Adapted TreeEditor

• Apply/Revert Handler

• Table (read-only, auto-edit table column)

• TabularEditor (auto-update)

• DateEditor

• Dynamic EnumEditor

• Dynamic Range Editor

• Dynamic Views

• HDF5 Tree

• History

• Invalid state handling

• ListStrEditor

• ListEditor

• ListEditor (notebook tabs)

• MVC

• Multi-selection string list

• Multithread

• Multithread 2

• NumPy array TabularEditor

• NumPy ArrayViewEditor

• Popup Dialog

• Property List

• ScrubberEditor

• Settable cached property

202 Chapter 4. TraitsUI 6.0 Demos

https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/ListEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/RGBColorEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/RangeEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/SetEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/TableEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/TextEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/TitleEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/TreeEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Standard_Editors/TupleEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Adapted_tree_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Apply_Revert_handler_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Auto_editable_readonly_table_cells.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Auto_update_TabularEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Date_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Dynamic_EnumEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Dynamic_range_trait_and_editor.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Dynamic_views_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/HDF5_tree_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/History_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Invalid_state_handling.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/ListStrEditor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/List_editors_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/List_editor_notebook_selection_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/MVC_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Multi_select_string_list.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Multi_thread_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Multi_thread_demo_2.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/NumPy_array_tabular_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/NumPy_array_view_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Popup_Dialog_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Property_List_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Scrubber_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Settable_cached_property.py

TraitsUI 4 User Manual, Release 6.0.0

• Statusbar

• StringListEditor

• TableEditor (with checkbox column)

• TableEditor (with context menu)

• TableEditor (with live search and cell)

• TabularEditor

• TimeEditor

4.2. Advanced Demos 203

https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Statusbar_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/String_list_ui_editor.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Table_editor_with_checkbox_column.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Table_editor_with_context_menu_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Table_editor_with_live_search_and_cell_editor.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Tabular_editor_demo.py
https://github.com/enthought/traitsui/tree/master/examples/demo/Advanced/Time_editor_demo.py

TraitsUI 4 User Manual, Release 6.0.0

204 Chapter 4. TraitsUI 6.0 Demos

CHAPTER 5

Traits UI Changelog

5.1 Release 6.0.0

This release introduces preliminary support for Qt5 via PyQt5, thanks to the work of Gregor Thalhammer which got
the ball rolling. Qt5 support is not yet robustly tested in deployed applications, so there may yet be bugs to find.
As part of this effort all occurences of old-style signals and slots have been removed; and this has greatly improved
stability under Qt.

This release also features a great deal of work at the API level to disentangle the two-way dependencies between
Pyface and TraitsUI. This has involved moving a number of sub-packages between the two libraries, most notably the
zipped image resource support and a number of trait definitions. We have endeavored to keep backwards compatibility
via stub modules in the original locations, but we can’t guarantee that there will be no issues with third party code
caused by the change in locations. We haven’t been able to remove all dependencies, but as of this release on the dock
and workbench submodules have required dependencies on TraitsUI.

As part of the latter work, support for TraitsUI Themes have been removed. This was a feature that was only available
under WxPython, was slow, was never used in production code, and was not supported for over a decade. Some of the
codebase remains as it is still used by the PyFace Dock infrastructure and several editors, but ther long-term intention
is to remove this completely.

Another long-desired feature was the ability to write toolkit backends for Pyface and TraitsUI that are not part of the
main codebase. This is now possible by contributing new toolkit backends to the “traitsui.toolkit” pkg_resources entry
point in a setup.py. This work was accompanied by an overhaul of the toolkit discovery and loading infrastructure; in
particular Pyface and TraitsUI now share the same code for performing these searches and loading the backends.

The entire TraitsUI codebase has been run through the AutoPEP8, assisted with some customized fixups and occasional
drive-by cleanups of code, which means that the codebase is generally easier to read and follows modern Python
conventions.

Finally, the testing infrastructure has been overhauled to provide a one-stop location to run tests in self-contained
environments using Enthought’s EDM package management tool. Tests can be run from any python environment
with the “edm” command available and the “click” library installed with the “etstool.py” script at the top level of the
repository. In particular:

205

TraitsUI 4 User Manual, Release 6.0.0

python etstool.py test_all

will run all relevant tests for all available toolkits in all supported python versions. The TravisCI and Appveyor
continuous integration tools have been updated to make use of these facilities as well.

Thanks to Matrin Bergtholdt, Alex Chabot, Kit Choi, Mark Dickinson, Robin Dunn, Pradyun Gedam, Robert Kern,
Marika Murphy, Pankaj Pandey, Steve Peak, Prabhu Ramachandran, Jonathan Rocher, John Thacker, Gregor Thal-
hammer, Senganal Thirunavukkarasu, John Tyree, Ioannis Tziakos, Alona Varshal, Corran Webster, John Wiggins

5.1.1 Enhancements

• Support for Qt5 (#347, #352, #350, #433)

• Remove TraitsUI Themes (#342)

• Improve Toolkit selection and handling (#425, #429)

• API Documentation (#438)

• Adapter documentation (#340)

• Support multi-selection in DataFrameEditor (#413)

• DataFrameEditor demo (#444)

• Common BasePanel class for toolkits (#392)

• Labels honor enable_when values (#401)

• Better error messages when toolkit doesn’t implement methods (#391)

• Improve TraitsUI Action handling (#384)

• ListEditor UI improvements (#338, #396, #395)

• Remove old style signals and slots for Qt backend (#330, #346, #347, #403)

• Expose a “refresh” trait for the DataFrameEditor (#288)

• Use Enthought Deployment Manager to automate CI and testing (#321, #357)

• Continuous integration on OS X (#322)

• Reduce circular dependencies of PyFace on TraitsUI (#304)

• PEP8-compliant formatting of source (#290)

• Add progress bar column for TableEditor (#287)

• Add codecov coverage reports (#285, #328)

5.1.2 Fixes

• Fix some issues for newer WxPython (#418)

• Fix Wx simple FileEditor (#426)

• Fixes for DataFrameEditor (#415)

• Fixes for preferences state saving under Qt (#410, #447)

• Fix panel state after setting preferences (#253)

• Fix TableEditor ColorColumn (#399)

206 Chapter 5. Traits UI Changelog

TraitsUI 4 User Manual, Release 6.0.0

• Prevent loopback from slider in Qt RangeEditor (#400)

• Fix Action buttons under Qt (#393, #394)

• Fix ValueEditor icons (#386)

• Fix bug in update_object (#379)

• Avoid reading Event trait values in sync_value (#375)

• Fix raise_to_debug calls (#362, #372)

• Fix errors during garbage collection (#359)

• Remove unused argument in wx.hook_events (#360)

• Fix button label updates (#358)

• Fix TreeEditor label updates (#335)

• Proper InstanceEditor dialog lifecycle (#332)

• Don’t explicitly destroy child widgets under Qt (#283)

• Test fixes and improvements (#329, #369, #371, #327)

• Fixes for demos and examples (#320, #445)

• Fix CheckListEditor string comparison (#318)

• Remove some spurious print statements (#305)

• Documentation fixes (#301, #326, #380, #438, #443)

• Fixes for Python 3 compatibility (#295, #300, #165, #311, #410)

• Fix error with Qt table model mimetype (#296)

• Fixes for continuous integration (#299, #345, #365, #397, #420, #427)

• Fix offset issue when dragging from Qt TreeEditor (#293)

• Fix Wx kill-focus event issues (#291)

• Fix readthedocs build (#281)

5.2 Release 5.2.0

5.2.1 Enhancements

• Add support for multi-select in the DataFrameEditor (#413).

5.3 Release 5.1.0

5.3.1 Enhancements

• Enthought Sphinx Theme Support (#219)

• Allow hiding groups in split layouts on Qt (#246)

• Allow subclass of Controller to set a default model (#255)

5.2. Release 5.2.0 207

TraitsUI 4 User Manual, Release 6.0.0

• Add toolbar in Qt UI panel (#263)

5.3.2 Fixes

• Fix Qt TableEditor segfault on editing close (#277)

• Update tree nodes when adding children to am empty tree (#251)

• Change default backend from Wx to Qt (#254, #256)

• Improve toolkit selection (#259)

• Fix capturing the mouse and click events on Wx (#265, #266)

• Remove duplicated traits in NotebookEditor (#268)

• Fix exception during disposal of ListStrEditor (#270)

• Version number in documentation (#273)

5.4 Release 5.0.0

This release features experimental support for Python 3 with the Qt toolkit!

This is based in large part on the work of Yves Delley and Pradyun Gedam, but also owes a lot to Ioannis Tziakos
for implementing container-based continuous integration and Prabhu Ramachandran and Corran Webster for tracking
down last-minute bugs. Python 3 support is probably not yet ready for production use, but feedback and bug reports
are welcome, and all future pull requests will be expected to work with Python 3.4 and later. Python 3 support requires
Traits 4.5 or greater, and Pyface 5.0 or greater.

In addition, this release includes fixes to support wxPython 3.0 and deprecates wxPython 2.6. Thanks to Robin Dunn
for providing these improvements.

This release also introduces a DataFrameEditor which provides a tabular view of a Pandas DataFrame, similar to the
existing ArrayViewEditor.

There are also a number of bug fixes and minor improvements detailed below.

Finally, this release changes the default GUI toolkit from Wx to Qt. This changes the behaviour of the library in
the case where both WxPython and PyQt/PySide are installed and the user or code doesn’t specify the toolkit to use
explicitly.

5.4.1 New Features

• Experimental Python 3 support (#230)

• A DataFrameEditor for Pandas DataFrames, similar to the ArrayViewEditor (#196)

5.4.2 Enhancements

• Change the default backend from Wx to Qt (#212)

• Add a Qt version of the ProgressEditor (#217)

• Links to demos in the documentation (#159)

• Add minimal support for the dock_styles option to the Qt tabbed List Editor. (#143)

208 Chapter 5. Traits UI Changelog

TraitsUI 4 User Manual, Release 6.0.0

5.4.3 Fixes

• Fix failure to disconnect selection listeners for ListStrEditor in Qt (#223)

• Fix layout of TextEditors in some situations (#216)

• Fix removal of _popEventHandlers not owned by TraitsUI in Wx (#215)

• Remove some old (TraitsUI 3.0-era) documentation (#214)

• Help button now works on Qt (#160)

5.5 Release 4.5.1

5.5.1 Fixes

• Fix pypi installation problem (#206)

5.6 Release 4.5.0

5.6.1 Fixes

• Application-modal Traits UI dialogs are correctly styled as application-modal under Qt. On Macs, they will
now appear as independent windows rather than drop-down sheets. (#164)

• Qt CodeEditor now honors ‘show_line_numbers’ and the ‘readonly’ style (#137)

• Deprecated implements declaration removed, use provides instead (#152)

• Fix TableEditor so that Qt.QSplitter honors ‘orientation’ trait (#171)

• Show row labels in Qt TableEditor when requested (#176)

• Fix TupleEditor so that multiple change events are not fired (#179)

• Numpy dependency is now optional. ArrayEditor will not be available if numpy cannot be imported (#181)

• Add development versioning (#200)

5.7 Release 4.4.0

The biggest change in this release is support for the new adaptation mechanism in Traits 4.4.0. Other than that, there
are a number of other minor changes, improvements and bugfixes.

Corran Webster (corranwebster on GitHub) is now maintainer of TraitsUI.

Change summary since 4.3.0

5.7.1 New Features

• Changes for new Traits adaptation mechanism support (#113)

5.5. Release 4.5.1 209

TraitsUI 4 User Manual, Release 6.0.0

5.7.2 Enhancements

• Add Travis-CI support.

• Remove the use of the deprecated PySimpleApp under Wx and several other improvements. (#107)

• Improvements to Qt TabularEditor, TableEditor and TreeEditor drag and drop support. Should be roughly on
par with Wx support. No API changes. (#124, #126, #129, #135)

• Improvements to PyMimeData coercion to better handle lists of items. (#127)

5.7.3 Fixes

• Fixes item selection issue #133 in ListStrEditor under Wx 2.9 (#137)

• Fixes to avoid asking for value of a Delegated Event (#123 and #136)

• Fix drag image location for Qt TreeEditor (#132)

• Qt TreeEditor supports bg and fg colors and column labels correctly. (#131)

• Fix ListEditor under PySide (#125)

• remove event handlers before window destruction in Wx. Required for Wx 2.9. (#108)

There are currently some other unlisted changes going back some time before this file was created.

5.8 Traits 3.5.0 (Oct 15, 2010)

5.8.1 Enhancements

• adding support for drop-down menu in Button traits, but only for qt backend

• adding ‘show_notebook_menu’ option to ListEditor so that the user can right-click and show or hide the context
menu (Qt)

• added selection range traits to make it possible for users to replace selected text

5.8.2 Fixes

• fixed null color editor to work with tuples

• bug when opening a view with the ToolbarButton

5.9 Traits 3.4.0 (May 26, 2010)

5.9.1 Enhancements

• adding new example to make testing rgb color editor easier

210 Chapter 5. Traits UI Changelog

TraitsUI 4 User Manual, Release 6.0.0

5.9.2 Fixes

• fixed NumericColumn to not expect object to have model_selection attribute, and removed more dead theming
code

• fixed API bugs with the NumericColumn where its function signatures differed from its base class, but the
calling code expected them to all be the same

• fixed bug which was related to type name errors caused when running Sphinx

• when using File(exists=True), be sure to validate the type of the value first before using os.path.isfile()

5.10 Traits 3.3.0 (Feb 24, 2010)

5.10.1 Enhancements

The major enhancement this release is that the entire Traits package has been changed to use relative imports so that
it can be installed as a sub-package inside another larger library or package. This was not previously possible, since
the various modules inside Traits would import each other directly through “traits.[module]”. Many thanks to Darren
Dale for the patch.

5.10.2 Fixes

There have been numerous minor bugfixes since the last release. The most notable ones are:

• Many fixes involve making Traits UI more robust if wxPython is not installed on a system. In the past, we have
been able to use Qt if it was also installed, but removing Wx would lead to a variety of little bugs in various
places. We’ve squashed a number of these. We’ve also added better checks to make sure we’re selecting the
right toolkit at import and at runtime.

• A nasty cyclic reference was discovered and eliminated in DelegatesTo traits.

• The Undefined and Uninitialized Traits were made into true singletons.

• Much of the inconsistent formatting across the entire Traits source has been eliminated and normalized
(tabs/spaces, line endings).

5.11 Traits 3.2.0 (July 15, 2009)

5.11.1 Enhancements

• Implemented editable_labels attribute in the TabularEditor for enabling editing of the labels (i.e. the first col-
umn)

• Saving/restoring window positions works with multiple displays of different sizes

• New ProgressEditor

• Changed default colors for TableEditor

• Added support for HTMLEditor for QT backend using QtWebKit

• Improved support for opening links in external browser from HTMLEditor

• Added support for TabularEditor for QT backend

5.10. Traits 3.3.0 (Feb 24, 2010) 211

TraitsUI 4 User Manual, Release 6.0.0

• Added support for marking up the CodeEditor, including adding squiggles and dimming lines

• Added SearchEditor

• Improved unicode support

• Changed behavior of RangeEditor text box to not auto-set

• Added support in RangeEditor for specifying the method to evaluate new values.

• Add DefaultOverride editor factory courtesy Stéfan van der Walt

• Removed sys.exit() call from SaveHandler.exit()

5.11.2 Fixes

212 Chapter 5. Traits UI Changelog

CHAPTER 6

TraitsUI: Traits-capable windowing framework

The TraitsUI project contains a toolkit-independent GUI abstraction layer, which is used to support the “visualization”
features of the Traits package. Thus, you can write model in terms of the Traits API and specify a GUI in terms of the
primitives supplied by TraitsUI (views, items, editors, etc.), and let TraitsUI and your selected toolkit and back-end
take care of the details of displaying them.

6.1 Example

Given a Traits model like the following:

from traits.api import HasTraits, Str, Range, Enum

class Person(HasTraits):
name = Str('Jane Doe')
age = Range(low=0)
gender = Enum('female', 'male')

person = Person(age=30)

we can use TraitsUI to specify a and display a GUI view:

from traitsui.api import Item, RangeEditor, View

person_view = View(
Item('name'),
Item('gender'),
Item('age', editor=RangeEditor(mode='spinner')),
buttons=['OK', 'Cancel'],
resizable=True,

)

person.configure_traits(view=person_view)

213

https://travis-ci.org/enthought/traitsui
https://ci.appveyor.com/project/EnthoughtOSS/traitsui/branch/master
https://codecov.io/github/enthought/traitsui?branch=master
http://github.com/enthought/traits

TraitsUI 4 User Manual, Release 6.0.0

which creates a GUI which looks like this:

6.2 Important Links

• Website and Documentation: http://docs.enthought.com/traitsui

– User Manual http://docs.enthought.com/traitsui/traitsui_user_maunal

– Tutorial http://docs.enthought.com/traitsui/tutorial

– API Documentation http://docs.enthought.com/traitsui/api

• Source code repository: https://github.com/enthought/traitsui

– Issue tracker: https://github.com/enthought/traitsui/issues

• Download releases: https://pypi.python.org/pypi/traitsui

• Mailing list: https://groups.google.com/forum/#!forum/ets-users

6.3 Installation

If you want to run traitsui, you must also install:

• Traits https://github.com/enthought/traits

• Pyface https://github.com/enthought/pyface

You will also need one of the following backends:

• PyQt

• wxPython

• PySide

• PyQt5

Backends have additional dependencies and there are optional dependencies on NumPy and Pandas for some editors.

TraitsUI along with all dependencies can be installed in a straightforward way using the Enthought Deployment
Manager, pip or other .

214 Chapter 6. TraitsUI: Traits-capable windowing framework

http://docs.enthought.com/traitsui
http://docs.enthought.com/traitsui/traitsui_user_maunal
http://docs.enthought.com/traitsui/tutorial
http://docs.enthought.com/traitsui/api
https://github.com/enthought/traitsui
https://github.com/enthought/traitsui/issues
https://pypi.python.org/pypi/traitsui
https://groups.google.com/forum/#!forum/ets-users
https://github.com/enthought/traits
https://github.com/enthought/pyface
http://docs.enthought.com/edm/
http://docs.enthought.com/edm/

TraitsUI 4 User Manual, Release 6.0.0

6.4 Running the Test Suite

To run the test suite, you will need to install Git and EDM as well as have a Python environment which has install
Click available. You can then follow the instructions in etstool.py. In particular:

> python test_all

will run tests in all supported environments automatically.

6.4. Running the Test Suite 215

http://docs.enthought.com/edm/
http://click.pocoo.org/

TraitsUI 4 User Manual, Release 6.0.0

216 Chapter 6. TraitsUI: Traits-capable windowing framework

CHAPTER 7

Indices and tables

• genindex

• search

217

TraitsUI 4 User Manual, Release 6.0.0

218 Chapter 7. Indices and tables

Python Module Index

t
traitsui, 180
traitsui.api, 123
traitsui.base_panel, 123
traitsui.basic_editor_factory, 124
traitsui.color_column, 125
traitsui.context_value, 125
traitsui.delegating_handler, 125
traitsui.dock_window_theme, 126
traitsui.editor, 126
traitsui.editor_factory, 127
traitsui.editors, 115
traitsui.editors.api, 101
traitsui.editors.boolean_editor, 101
traitsui.editors.button_editor, 102
traitsui.editors.check_list_editor, 102
traitsui.editors.code_editor, 102
traitsui.editors.color_editor, 102
traitsui.editors.compound_editor, 103
traitsui.editors.csv_list_editor, 103
traitsui.editors.custom_editor, 104
traitsui.editors.date_editor, 104
traitsui.editors.default_override, 104
traitsui.editors.directory_editor, 105
traitsui.editors.dnd_editor, 105
traitsui.editors.drop_editor, 105
traitsui.editors.enum_editor, 105
traitsui.editors.file_editor, 105
traitsui.editors.font_editor, 106
traitsui.editors.history_editor, 106
traitsui.editors.html_editor, 106
traitsui.editors.image_editor, 107
traitsui.editors.image_enum_editor, 107
traitsui.editors.instance_editor, 107
traitsui.editors.key_binding_editor, 107
traitsui.editors.list_editor, 107
traitsui.editors.list_str_editor, 108
traitsui.editors.null_editor, 108
traitsui.editors.popup_editor, 108

traitsui.editors.progress_editor, 108
traitsui.editors.range_editor, 108
traitsui.editors.rgb_color_editor, 109
traitsui.editors.scrubber_editor, 109
traitsui.editors.search_editor, 109
traitsui.editors.set_editor, 109
traitsui.editors.shell_editor, 109
traitsui.editors.styled_date_editor, 110
traitsui.editors.table_editor, 110
traitsui.editors.tabular_editor, 111
traitsui.editors.text_editor, 111
traitsui.editors.time_editor, 111
traitsui.editors.title_editor, 111
traitsui.editors.tree_editor, 112
traitsui.editors.tuple_editor, 114
traitsui.editors.value_editor, 114
traitsui.editors_gen, 128
traitsui.extras, 116
traitsui.extras.edit_column, 115
traitsui.extras.saving, 115
traitsui.group, 128
traitsui.handler, 129
traitsui.help, 133
traitsui.help_template, 133
traitsui.helper, 134
traitsui.image, 116
traitsui.include, 134
traitsui.instance_choice, 135
traitsui.item, 135
traitsui.key_bindings, 137
traitsui.list_str_adapter, 95
traitsui.menu, 140
traitsui.message, 141
traitsui.mimedata, 142
traitsui.null, 117
traitsui.null.color_trait, 116
traitsui.null.font_trait, 116
traitsui.null.rgb_color_trait, 117
traitsui.null.toolkit, 117
traitsui.table_column, 142

219

TraitsUI 4 User Manual, Release 6.0.0

traitsui.table_filter, 145
traitsui.tabular_adapter, 89
traitsui.tests, 121
traitsui.tests.editors, 119
traitsui.tests.editors.test_liststr_editor,

118
traitsui.tests.null_backend, 119
traitsui.tests.test_handler, 119
traitsui.tests.test_regression, 120
traitsui.tests.test_shadow_group, 121
traitsui.tests.test_toolkit, 121
traitsui.tests.ui_editors, 119
traitsui.theme, 153
traitsui.toolkit, 153
traitsui.toolkit_traits, 157
traitsui.tree_node, 85
traitsui.ui, 171
traitsui.ui_editor, 172
traitsui.ui_editors, 123
traitsui.ui_editors.array_view_editor,

121
traitsui.ui_editors.data_frame_editor,

122
traitsui.ui_info, 173
traitsui.ui_traits, 173
traitsui.undo, 174
traitsui.value_tree, 175
traitsui.view, 178
traitsui.view_element, 179
traitsui.view_elements, 180

220 Python Module Index

Index

A
AbstractUndoItem (class in traitsui.undo), 174
accepts (traitsui.list_str_adapter.AnIListStrAdapter at-

tribute), 137
accepts (traitsui.list_str_adapter.IListStrAdapter at-

tribute), 138
accepts (traitsui.tabular_adapter.AnITabularAdapter at-

tribute), 147
accepts (traitsui.tabular_adapter.ITabularAdapter at-

tribute), 147
Action (class in traitsui.menu), 140
action (traitsui.menu.Action attribute), 140
action_handler() (traitsui.tests.test_handler.SampleHandler

method), 120
action_handler() (traitsui.tests.test_handler.SampleObject

method), 120
activated (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
activated() (traitsui.tree_node.ITreeNode method), 157
activated() (traitsui.tree_node.ITreeNodeAdapter

method), 159
activated() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 161
activated() (traitsui.tree_node.MultiTreeNode method),

163
activated() (traitsui.tree_node.ObjectTreeNode method),

165
activated() (traitsui.tree_node.TreeNode method), 167
adapter_column_indices (trait-

sui.tabular_adapter.TabularAdapter attribute),
148

adapter_column_map (trait-
sui.tabular_adapter.TabularAdapter attribute),
148

adapters (traitsui.list_str_adapter.ListStrAdapter at-
tribute), 138

adapters (traitsui.tabular_adapter.TabularAdapter at-
tribute), 148

add() (traitsui.undo.UndoHistory method), 174

add_checked() (traitsui.ui.UI method), 171
add_defined() (traitsui.ui.UI method), 171
add_enabled() (traitsui.ui.UI method), 171
add_to_menu() (traitsui.base_panel.BasePanel method),

123
add_to_menu() (traitsui.editors.table_editor.BaseTableEditor

method), 110
add_to_toolbar() (traitsui.base_panel.BasePanel method),

123
add_to_toolbar() (traitsui.editors.table_editor.BaseTableEditor

method), 110
add_visible() (traitsui.ui.UI method), 171
alignment (traitsui.tabular_adapter.TabularAdapter

attribute), 148
alignment (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

attribute), 122
allows_children() (traitsui.tree_node.ITreeNode method),

157
allows_children() (traitsui.tree_node.ITreeNodeAdapter

method), 159
allows_children() (trait-

sui.tree_node.ITreeNodeAdapterBridge
method), 161

allows_children() (traitsui.tree_node.MultiTreeNode
method), 163

allows_children() (traitsui.tree_node.ObjectTreeNode
method), 165

allows_children() (traitsui.tree_node.TreeNode method),
167

alternating_row_colors (trait-
sui.editors.tree_editor.ToolkitEditorFactory
attribute), 112

AnIListStrAdapter (class in traitsui.list_str_adapter), 137
AnITabularAdapter (class in traitsui.tabular_adapter), 147
append_child() (traitsui.tree_node.ITreeNode method),

157
append_child() (traitsui.tree_node.ITreeNodeAdapter

method), 159
append_child() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 161

221

TraitsUI 4 User Manual, Release 6.0.0

append_child() (traitsui.tree_node.ObjectTreeNode
method), 165

append_child() (traitsui.tree_node.TreeNode method),
167

apply() (traitsui.handler.Handler method), 130
apply() (traitsui.tests.test_handler.SampleHandler

method), 120
ApplyButton, 13
ApplyButton (in module traitsui.menu), 140
array_editor() (traitsui.toolkit.Toolkit method), 153
ArrayNode (class in traitsui.value_tree), 175
ArrayViewAdapter (class in trait-

sui.ui_editors.array_view_editor), 121
ArrayViewEditor (class in trait-

sui.ui_editors.array_view_editor), 122
assert_toolkit_import() (in module traitsui.toolkit), 156
ATheme (class in traitsui.ui_traits), 173
attribute, 96
attributes

Group, 9
Item, 6
View, 14

auto_close_message() (in module traitsui.message), 141
auto_open (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
AutoCloseMessage (class in traitsui.message), 141

B
BasePanel (class in traitsui.base_panel), 123
BaseTableEditor (class in traitsui.editors.table_editor),

110
basic_types() (in module traitsui.value_tree), 178
BasicEditorFactory (class in trait-

sui.basic_editor_factory), 124
bg_color (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 138
bg_color (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
bgcolor (traitsui.editors.styled_date_editor.CellFormat at-

tribute), 110
bind() (traitsui.ui_info.UIInfo method), 173
bind_context() (traitsui.ui_info.UIInfo method), 173
bold (traitsui.editors.styled_date_editor.CellFormat at-

tribute), 110
boolean_editor() (traitsui.toolkit.Toolkit method), 153
BooleanEditor (in module trait-

sui.editors.boolean_editor), 101
BoolNode (class in traitsui.value_tree), 175
button_editor() (traitsui.toolkit.Toolkit method), 153
ButtonEditor (in module traitsui.editors.button_editor),

102
buttons

attribute, 12
examples, 13

standard, 13

C
cache (traitsui.list_str_adapter.ListStrAdapter attribute),

138
cache (traitsui.tabular_adapter.TabularAdapter attribute),

148
cache_flushed (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 138
cache_flushed (traitsui.tabular_adapter.TabularAdapter

attribute), 148
can_add() (traitsui.tree_node.ITreeNode method), 157
can_add() (traitsui.tree_node.ITreeNodeAdapter

method), 159
can_add() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 161
can_add() (traitsui.tree_node.MultiTreeNode method),

163
can_add() (traitsui.tree_node.ObjectTreeNode method),

165
can_add() (traitsui.tree_node.TreeNode method), 167
can_add_to_menu() (traitsui.base_panel.BasePanel

method), 123
can_add_to_menu() (trait-

sui.editors.table_editor.BaseTableEditor
method), 110

can_add_to_toolbar() (traitsui.base_panel.BasePanel
method), 124

can_add_to_toolbar() (trait-
sui.editors.table_editor.BaseTableEditor
method), 110

can_auto_close() (traitsui.tree_node.ITreeNode method),
157

can_auto_close() (traitsui.tree_node.ITreeNodeAdapter
method), 159

can_auto_close() (trait-
sui.tree_node.ITreeNodeAdapterBridge
method), 161

can_auto_close() (traitsui.tree_node.MultiTreeNode
method), 163

can_auto_close() (traitsui.tree_node.ObjectTreeNode
method), 165

can_auto_close() (traitsui.tree_node.TreeNode method),
167

can_auto_open() (traitsui.tree_node.ITreeNode method),
157

can_auto_open() (traitsui.tree_node.ITreeNodeAdapter
method), 159

can_auto_open() (traitsui.tree_node.ITreeNodeAdapterBridge
method), 161

can_auto_open() (traitsui.tree_node.MultiTreeNode
method), 163

can_auto_open() (traitsui.tree_node.ObjectTreeNode
method), 165

222 Index

TraitsUI 4 User Manual, Release 6.0.0

can_auto_open() (traitsui.tree_node.TreeNode method),
167

can_copy() (traitsui.tree_node.ITreeNode method), 157
can_copy() (traitsui.tree_node.ITreeNodeAdapter

method), 159
can_copy() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 161
can_copy() (traitsui.tree_node.MultiTreeNode method),

163
can_copy() (traitsui.tree_node.ObjectTreeNode method),

165
can_copy() (traitsui.tree_node.TreeNode method), 167
can_delete() (traitsui.tree_node.ITreeNode method), 157
can_delete() (traitsui.tree_node.ITreeNodeAdapter

method), 159
can_delete() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 161
can_delete() (traitsui.tree_node.MultiTreeNode method),

163
can_delete() (traitsui.tree_node.ObjectTreeNode

method), 165
can_delete() (traitsui.tree_node.TreeNode method), 167
can_delete_me() (traitsui.tree_node.ITreeNode method),

157
can_delete_me() (traitsui.tree_node.ITreeNodeAdapter

method), 159
can_delete_me() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
can_delete_me() (traitsui.tree_node.MultiTreeNode

method), 164
can_delete_me() (traitsui.tree_node.ObjectTreeNode

method), 165
can_delete_me() (traitsui.tree_node.TreeNode method),

167
can_drop (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
can_drop() (traitsui.handler.Handler method), 130
can_edit (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 138
can_edit (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
can_import() (traitsui.handler.Handler method), 130
can_insert() (traitsui.tree_node.ITreeNode method), 157
can_insert() (traitsui.tree_node.ITreeNodeAdapter

method), 159
can_insert() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
can_insert() (traitsui.tree_node.MultiTreeNode method),

164
can_insert() (traitsui.tree_node.ObjectTreeNode method),

165
can_insert() (traitsui.tree_node.TreeNode method), 167
can_rename() (traitsui.tree_node.ITreeNode method),

157

can_rename() (traitsui.tree_node.ITreeNodeAdapter
method), 160

can_rename() (traitsui.tree_node.ITreeNodeAdapterBridge
method), 162

can_rename() (traitsui.tree_node.MultiTreeNode
method), 164

can_rename() (traitsui.tree_node.ObjectTreeNode
method), 165

can_rename() (traitsui.tree_node.TreeNode method), 167
can_rename_me() (traitsui.tree_node.ITreeNode

method), 157
can_rename_me() (traitsui.tree_node.ITreeNodeAdapter

method), 160
can_rename_me() (trait-

sui.tree_node.ITreeNodeAdapterBridge
method), 162

can_rename_me() (traitsui.tree_node.MultiTreeNode
method), 164

can_rename_me() (traitsui.tree_node.ObjectTreeNode
method), 165

can_rename_me() (traitsui.tree_node.TreeNode method),
167

CancelButton, 13
CancelButton (in module traitsui.menu), 140
CanSaveMixin (class in traitsui.extras.saving), 115
CellFormat (class in traitsui.editors.styled_date_editor),

110
check_button() (traitsui.base_panel.BasePanel method),

124
check_list_editor() (traitsui.toolkit.Toolkit method), 153
checked_when (traitsui.menu.Action attribute), 140
CheckListEditor (in module trait-

sui.editors.check_list_editor), 102
Child (class in traitsui.tests.test_regression), 120
class attribute, 96
ClassNode (class in traitsui.value_tree), 175
cleanup() (traitsui.tabular_adapter.TabularAdapter

method), 148
clear() (traitsui.undo.UndoHistory method), 174
clear_toolkit() (in module traitsui.tests.test_toolkit), 121
click (traitsui.editors.tree_editor.ToolkitEditorFactory at-

tribute), 112
click() (traitsui.tree_node.ITreeNode method), 157
click() (traitsui.tree_node.ITreeNodeAdapter method),

160
click() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
click() (traitsui.tree_node.MultiTreeNode method), 164
click() (traitsui.tree_node.ObjectTreeNode method), 165
click() (traitsui.tree_node.TreeNode method), 167
clone() (traitsui.key_bindings.KeyBindings method), 137
clone_traits() (traitsui.table_filter.GenericTableFilterRule

method), 145
close() (traitsui.extras.saving.SaveHandler method), 115

Index 223

TraitsUI 4 User Manual, Release 6.0.0

close() (traitsui.handler.Handler method), 130
close_dock_control() (in module traitsui.handler), 133
close_result attribute, 15
CloseAction (in module traitsui.menu), 141
closed() (traitsui.delegating_handler.DelegatingHandler

method), 125
closed() (traitsui.extras.saving.SaveHandler method), 115
closed() (traitsui.handler.Handler method), 130
cmp() (traitsui.table_column.TableColumn method), 144
code_editor() (traitsui.toolkit.Toolkit method), 153
CodeEditor (in module traitsui.editors.code_editor), 102
coerce_button() (traitsui.base_panel.BasePanel method),

124
color_editor() (traitsui.toolkit.Toolkit method), 153
color_trait() (traitsui.null.toolkit.GUIToolkit method),

117
color_trait() (traitsui.toolkit.Toolkit method), 153
ColorColumn (class in traitsui.color_column), 125
ColorEditor() (in module traitsui.editors.color_editor),

102
ColorTrait() (in module traitsui.toolkit_traits), 157
column (traitsui.tabular_adapter.AnITabularAdapter at-

tribute), 147
column (traitsui.tabular_adapter.ITabularAdapter at-

tribute), 147
column (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
column_dict (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
column_headers (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
column_id (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
column_map (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
column_menu (traitsui.tabular_adapter.TabularAdapter

attribute), 148
columns (traitsui.tabular_adapter.AnITabularAdapter at-

tribute), 147
columns (traitsui.tabular_adapter.ITabularAdapter at-

tribute), 147
columns (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
columns (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 122
columns attribute, 9
command button, 96
commatize() (in module traitsui.helper), 134
ComplexNode (class in traitsui.value_tree), 175
compound_editor() (traitsui.toolkit.Toolkit method), 153
CompoundEditor (in module trait-

sui.editors.compound_editor), 103
configure_traits()

default view example, 16

examples, 4, 8
method, 20
view parameter, 4, 19

configure_traits() (traitsui.handler.Handler method), 131
confirm_delete() (traitsui.tree_node.ITreeNode method),

157
confirm_delete() (traitsui.tree_node.ITreeNodeAdapter

method), 160
confirm_delete() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
confirm_delete() (traitsui.tree_node.ObjectTreeNode

method), 165
confirm_delete() (traitsui.tree_node.TreeNode method),

167
constants() (traitsui.null.toolkit.GUIToolkit method), 117
constants() (traitsui.toolkit.Toolkit method), 153
contains() (traitsui.table_filter.GenericTableFilterRule

method), 145
content (traitsui.tabular_adapter.TabularAdapter at-

tribute), 148
content attribute

Group, 9
View, 15

context, 20
examples, 21
View, 16

ContextValue (class in traitsui.context_value), 125
control, 6
control (traitsui.base_panel.BasePanel attribute), 124
controller, 2, 96
Controller (built-in class), 25
Controller (class in traitsui.handler), 129
convert_theme() (in module traitsui.ui_traits), 173
convert_to_color() (in module traitsui.null.color_trait),

116
convert_to_color() (in module trait-

sui.null.rgb_color_trait), 117
CSVListEditor (class in traitsui.editors.csv_list_editor),

103
Custom (class in traitsui.item), 135
Custom class, 7
custom_editor() (traitsui.editor_factory.EditorFactory

method), 127
custom_editor() (traitsui.editors.csv_list_editor.CSVListEditor

method), 103
custom_editor() (traitsui.editors.default_override.DefaultOverride

method), 104
custom_editor() (traitsui.editors.range_editor.ToolkitEditorFactory

method), 108
custom_editor() (traitsui.toolkit.Toolkit method), 153
CustomEditor (in module traitsui.editors.custom_editor),

104
CV (in module traitsui.context_value), 125
CVType() (in module traitsui.context_value), 125

224 Index

TraitsUI 4 User Manual, Release 6.0.0

D
DataFrameAdapter (class in trait-

sui.ui_editors.data_frame_editor), 122
DataFrameEditor (class in trait-

sui.ui_editors.data_frame_editor), 122
DateEditor (class in traitsui.editors.date_editor), 104
dclick (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
dclick() (traitsui.tree_node.ITreeNode method), 158
dclick() (traitsui.tree_node.ITreeNodeAdapter method),

160
dclick() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
dclick() (traitsui.tree_node.MultiTreeNode method), 164
dclick() (traitsui.tree_node.ObjectTreeNode method), 165
dclick() (traitsui.tree_node.TreeNode method), 167
default view, 16, 17

example, 16
default_bg_color (trait-

sui.tabular_adapter.TabularAdapter attribute),
149

default_handler() (in module traitsui.handler), 133
default_icon() (traitsui.base_panel.BasePanel method),

124
default_show_help() (in module traitsui.help), 133
default_text (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 138
default_text_color (trait-

sui.tabular_adapter.TabularAdapter attribute),
149

default_traits_view()
default view method, 17

default_value (traitsui.list_str_adapter.ListStrAdapter at-
tribute), 138

default_value (traitsui.tabular_adapter.TabularAdapter at-
tribute), 149

default_value (traitsui.ui_traits.ATheme attribute), 173
default_value (traitsui.ui_traits.ViewStatus attribute), 173
DefaultOverride (class in trait-

sui.editors.default_override), 104
DefaultViewElement (class in traitsui.view_element), 179
defined_when (traitsui.menu.Action attribute), 140
defined_when attribute

Group, 10
Item, 6

DelegatingHandler (class in traitsui.delegating_handler),
125

delete() (traitsui.list_str_adapter.ListStrAdapter method),
138

delete() (traitsui.tabular_adapter.TabularAdapter
method), 149

delete() (traitsui.ui_editors.data_frame_editor.DataFrameAdapter
method), 122

delete_child() (traitsui.tree_node.ITreeNode method),
158

delete_child() (traitsui.tree_node.ITreeNodeAdapter
method), 160

delete_child() (traitsui.tree_node.ITreeNodeAdapterBridge
method), 162

delete_child() (traitsui.tree_node.ObjectTreeNode
method), 165

delete_child() (traitsui.tree_node.TreeNode method), 167
description() (traitsui.table_filter.EvalTableFilter

method), 145
description() (traitsui.table_filter.GenericTableFilterRule

method), 145
description() (traitsui.table_filter.MenuTableFilter

method), 146
description() (traitsui.table_filter.RuleTableFilter

method), 146
description() (traitsui.table_filter.TableFilter method),

146
destroy_children() (traitsui.toolkit.Toolkit method), 153
destroy_control() (traitsui.toolkit.Toolkit method), 153
dialog box, 96
DictNode (class in traitsui.value_tree), 175
directory_editor() (traitsui.toolkit.Toolkit method), 153
DirectoryEditor (in module trait-

sui.editors.directory_editor), 105
dispatch() (traitsui.ui.Dispatcher method), 171
Dispatcher (class in traitsui.ui), 171
disposable_traits (traitsui.ui.UI attribute), 171
dispose() (traitsui.editor.Editor method), 126
dispose() (traitsui.key_bindings.KeyBindings method),

137
dispose() (traitsui.ui.UI method), 171
dispose() (traitsui.ui_editor.UIEditor method), 172
dnd_editor() (traitsui.toolkit.Toolkit method), 153
DNDEditor (in module traitsui.editors.dnd_editor), 105
do() (traitsui.key_bindings.KeyBindings method), 137
do_undoable() (traitsui.ui.UI method), 171
dock attribute

Group, 9
Item, 6
View, 14

dock_control_for() (traitsui.handler.Handler method),
131

dock_theme (traitsui.editors.tree_editor.ToolkitEditorFactory
attribute), 112

dock_theme attribute, 9
dock_window_empty() (traitsui.handler.Handler

method), 131
dock_window_theme() (in module trait-

sui.dock_window_theme), 126
DockWindowTheme (class in trait-

sui.dock_window_theme), 126
drag (traitsui.tabular_adapter.TabularAdapter attribute),

Index 225

TraitsUI 4 User Manual, Release 6.0.0

149
drop_class attribute, 15
drop_editor() (traitsui.toolkit.Toolkit method), 154
drop_object() (traitsui.tree_node.ITreeNode method), 158
drop_object() (traitsui.tree_node.ITreeNodeAdapter

method), 160
drop_object() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
drop_object() (traitsui.tree_node.MultiTreeNode

method), 164
drop_object() (traitsui.tree_node.ObjectTreeNode

method), 166
drop_object() (traitsui.tree_node.TreeNode method), 167
DropEditor (in module traitsui.editors.drop_editor), 105
dropped (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 138
dropped (traitsui.tabular_adapter.TabularAdapter at-

tribute), 149

E
edit() (traitsui.key_bindings.KeyBindings method), 137
edit() (traitsui.table_filter.TableFilter method), 146
edit_traits(), 20
edit_traits() (traitsui.handler.Handler method), 131
edit_view() (traitsui.table_filter.RuleTableFilter method),

146
edit_view() (traitsui.table_filter.TableFilter method), 147
editable (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
editable (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 122
EditColumn (class in traitsui.extras.edit_column), 115
editor, 96
Editor (class in traitsui.editor), 126
editor (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
editor attribute, 6
editor factory, 97
EditorFactory (class in traitsui.editor_factory), 127
EditorWithListFactory (class in traitsui.editor_factory),

128
emphasized attribute, 6
enabled_when (traitsui.menu.Action attribute), 140
enabled_when attribute

Group, 10
Item, 6

ends_with() (traitsui.table_filter.GenericTableFilterRule
method), 145

enum_editor() (traitsui.toolkit.Toolkit method), 154
enum_values_changed() (in module traitsui.helper), 134
EnumEditor (in module traitsui.editors.enum_editor), 105
environment variable

ETS_TOOLKIT, 3

eq() (traitsui.table_filter.GenericTableFilterRule method),
145

error() (in module traitsui.message), 142
error() (traitsui.editor.Editor method), 126
ETS_TOOLKIT, 3
ETSConfig.toolkit, 3
eval_when() (traitsui.editors.table_editor.BaseTableEditor

method), 110
eval_when() (traitsui.ui.UI method), 171
EvalTableFilter (class in traitsui.table_filter), 145
evaluate() (traitsui.ui.UI method), 171
even_bg_color (traitsui.list_str_adapter.ListStrAdapter

attribute), 138
even_bg_color (traitsui.tabular_adapter.TabularAdapter

attribute), 149
even_text_color (traitsui.list_str_adapter.ListStrAdapter

attribute), 138
even_text_color (traitsui.tabular_adapter.TabularAdapter

attribute), 149
examples

buttons, 13
configure_traits(), 4, 8
context, 21
default view, 16
Include, 22
multi-object Views, 21
multiple Views, 18
View Group, 8
View object, 4

exit() (traitsui.extras.saving.SaveHandler method), 116
expands_on_dclick (trait-

sui.editors.tree_editor.ToolkitEditorFactory
attribute), 112

export attribute
Item, 6
View, 15

ExpressionColumn (class in traitsui.table_column), 142
extend() (traitsui.undo.UndoHistory method), 174
extended trait names

Item name attribute, 22
extended_traitname_changed(), 26

F
factory, 97
fgcolor (traitsui.editors.styled_date_editor.CellFormat at-

tribute), 110
file_editor() (traitsui.toolkit.Toolkit method), 154
FileEditor (in module traitsui.editors.file_editor), 105
filter() (traitsui.table_filter.EvalTableFilter method), 145
filter() (traitsui.table_filter.MenuTableFilter method), 146
filter() (traitsui.table_filter.RuleTableFilter method), 146
filter() (traitsui.table_filter.TableFilter method), 147
filter_by() (traitsui.view_elements.ViewElements

method), 180

226 Index

TraitsUI 4 User Manual, Release 6.0.0

find() (traitsui.ui.UI method), 171
find() (traitsui.view_elements.ViewElements method),

180
finish() (traitsui.ui.UI method), 171
FloatNode (class in traitsui.value_tree), 176
font (traitsui.tabular_adapter.TabularAdapter attribute),

149
font (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

attribute), 122
font_editor() (traitsui.toolkit.Toolkit method), 154
font_trait() (traitsui.null.toolkit.GUIToolkit method), 117
font_trait() (traitsui.toolkit.Toolkit method), 154
FontEditor() (in module traitsui.editors.font_editor), 106
fonts (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 122
FontTrait() (in module traitsui.toolkit_traits), 157
format (traitsui.tabular_adapter.TabularAdapter attribute),

149
format (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

attribute), 122
format_func attribute, 6
format_str attribute, 6
format_value() (traitsui.value_tree.ArrayNode method),

175
format_value() (traitsui.value_tree.ClassNode method),

175
format_value() (traitsui.value_tree.DictNode method),

175
format_value() (traitsui.value_tree.FunctionNode

method), 176
format_value() (traitsui.value_tree.ListNode method),

176
format_value() (traitsui.value_tree.MethodNode method),

176
format_value() (traitsui.value_tree.ObjectNode method),

177
format_value() (traitsui.value_tree.RootNode method),

177
format_value() (traitsui.value_tree.SetNode method), 177
format_value() (traitsui.value_tree.SingleValueTreeNodeObject

method), 177
format_value() (traitsui.value_tree.StringNode method),

178
format_value() (traitsui.value_tree.TupleNode method),

178
formats (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 123
FunctionNode (class in traitsui.value_tree), 176

G
ge() (traitsui.table_filter.GenericTableFilterRule method),

145
gen_editor_definitions() (in module traitsui.editors_gen),

128

GenericTableFilterRule (class in traitsui.table_filter), 145
GenericTableFilterRuleAndOrColumn (class in trait-

sui.table_filter), 145
GenericTableFilterRuleEnabledColumn (class in trait-

sui.table_filter), 146
GenericTableFilterRuleNameColumn (class in trait-

sui.table_filter), 146
GenericTableFilterRuleValueColumn (class in trait-

sui.table_filter), 146
get_add() (traitsui.tree_node.ITreeNode method), 158
get_add() (traitsui.tree_node.ITreeNodeAdapter method),

160
get_add() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
get_add() (traitsui.tree_node.MultiTreeNode method),

164
get_add() (traitsui.tree_node.ObjectTreeNode method),

166
get_add() (traitsui.tree_node.TreeNode method), 167
get_alignment() (traitsui.tabular_adapter.TabularAdapter

method), 149
get_background() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_background() (trait-

sui.tree_node.ITreeNodeAdapterBridge
method), 162

get_background() (traitsui.tree_node.TreeNode method),
168

get_bg_color() (traitsui.list_str_adapter.ListStrAdapter
method), 138

get_bg_color() (traitsui.tabular_adapter.TabularAdapter
method), 149

get_can_drop() (traitsui.list_str_adapter.ListStrAdapter
method), 139

get_can_drop() (traitsui.tabular_adapter.TabularAdapter
method), 149

get_can_edit() (traitsui.list_str_adapter.ListStrAdapter
method), 139

get_can_edit() (traitsui.tabular_adapter.TabularAdapter
method), 149

get_cell_color() (traitsui.color_column.ColorColumn
method), 125

get_cell_color() (traitsui.extras.edit_column.EditColumn
method), 115

get_cell_color() (traitsui.table_column.NumericColumn
method), 142

get_cell_color() (traitsui.table_column.TableColumn
method), 144

get_children() (traitsui.tree_node.ITreeNode method),
158

get_children() (traitsui.tree_node.ITreeNodeAdapter
method), 160

get_children() (traitsui.tree_node.ITreeNodeAdapterBridge
method), 162

Index 227

TraitsUI 4 User Manual, Release 6.0.0

get_children() (traitsui.tree_node.MultiTreeNode
method), 164

get_children() (traitsui.tree_node.ObjectTreeNode
method), 166

get_children() (traitsui.tree_node.TreeNode method), 168
get_children_id() (traitsui.tree_node.ITreeNode method),

158
get_children_id() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_children_id() (trait-

sui.tree_node.ITreeNodeAdapterBridge
method), 162

get_children_id() (traitsui.tree_node.MultiTreeNode
method), 164

get_children_id() (traitsui.tree_node.ObjectTreeNode
method), 166

get_children_id() (traitsui.tree_node.TreeNode method),
168

get_color_editor() (in module traitsui.null.color_trait),
116

get_column() (traitsui.tabular_adapter.TabularAdapter
method), 150

get_column_labels() (traitsui.tree_node.ITreeNode
method), 158

get_column_labels() (trait-
sui.tree_node.ITreeNodeAdapter method),
160

get_column_labels() (trait-
sui.tree_node.ITreeNodeAdapterBridge
method), 162

get_column_labels() (traitsui.tree_node.TreeNode
method), 168

get_column_menu() (trait-
sui.tabular_adapter.TabularAdapter method),
150

get_content() (traitsui.group.ShadowGroup method), 129
get_content() (traitsui.tabular_adapter.TabularAdapter

method), 150
get_data_column() (trait-

sui.table_column.NumericColumn method),
142

get_default_bg_color() (trait-
sui.list_str_adapter.ListStrAdapter method),
139

get_default_image() (trait-
sui.list_str_adapter.ListStrAdapter method),
139

get_default_text() (trait-
sui.list_str_adapter.ListStrAdapter method),
139

get_default_text_color() (trait-
sui.list_str_adapter.ListStrAdapter method),
139

get_default_value() (trait-

sui.list_str_adapter.ListStrAdapter method),
139

get_default_value() (trait-
sui.tabular_adapter.TabularAdapter method),
150

get_drag() (traitsui.list_str_adapter.ListStrAdapter
method), 139

get_drag() (traitsui.tabular_adapter.TabularAdapter
method), 150

get_drag_object() (traitsui.tree_node.ITreeNode method),
158

get_drag_object() (traitsui.tree_node.ITreeNodeAdapter
method), 160

get_drag_object() (trait-
sui.tree_node.ITreeNodeAdapterBridge
method), 162

get_drag_object() (traitsui.tree_node.MultiTreeNode
method), 164

get_drag_object() (traitsui.tree_node.ObjectTreeNode
method), 166

get_drag_object() (traitsui.tree_node.TreeNode method),
168

get_drag_value() (traitsui.table_column.ObjectColumn
method), 143

get_dropped() (traitsui.list_str_adapter.ListStrAdapter
method), 139

get_dropped() (traitsui.tabular_adapter.TabularAdapter
method), 150

get_edit_height() (traitsui.table_column.TableColumn
method), 144

get_edit_width() (traitsui.table_column.TableColumn
method), 144

get_editor() (traitsui.table_column.ListColumn method),
142

get_editor() (traitsui.table_column.NumericColumn
method), 142

get_editor() (traitsui.table_column.ObjectColumn
method), 143

get_editor() (traitsui.table_filter.GenericTableFilterRuleNameColumn
method), 146

get_editor() (traitsui.table_filter.GenericTableFilterRuleValueColumn
method), 146

get_editors() (traitsui.ui.UI method), 171
get_error_control() (trait-

sui.editors.tuple_editor.SimpleEditor method),
114

get_error_control() (traitsui.ui_editor.UIEditor method),
172

get_error_controls() (traitsui.ui.UI method), 171
get_extended_value() (traitsui.ui.UI method), 171
get_font() (traitsui.tabular_adapter.TabularAdapter

method), 150
get_font_editor() (in module traitsui.null.font_trait), 117
get_foreground() (traitsui.tree_node.ITreeNodeAdapter

228 Index

TraitsUI 4 User Manual, Release 6.0.0

method), 160
get_foreground() (trait-

sui.tree_node.ITreeNodeAdapterBridge
method), 162

get_foreground() (traitsui.tree_node.TreeNode method),
168

get_format() (traitsui.tabular_adapter.TabularAdapter
method), 150

get_graph_color() (traitsui.table_column.TableColumn
method), 144

get_help() (traitsui.item.Item method), 136
get_horizontal_alignment() (trait-

sui.table_column.NumericColumn method),
142

get_horizontal_alignment() (trait-
sui.table_column.TableColumn method),
144

get_icon() (traitsui.tree_node.ITreeNode method), 158
get_icon() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_icon() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
get_icon() (traitsui.tree_node.MultiTreeNode method),

164
get_icon() (traitsui.tree_node.ObjectTreeNode method),

166
get_icon() (traitsui.tree_node.TreeNode method), 168
get_icon_path() (traitsui.tree_node.ITreeNode method),

158
get_icon_path() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_icon_path() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
get_icon_path() (traitsui.tree_node.MultiTreeNode

method), 164
get_icon_path() (traitsui.tree_node.ObjectTreeNode

method), 166
get_icon_path() (traitsui.tree_node.TreeNode method),

168
get_id() (traitsui.group.ShadowGroup method), 129
get_id() (traitsui.item.Item method), 136
get_image() (traitsui.list_str_adapter.ListStrAdapter

method), 139
get_image() (traitsui.table_column.TableColumn

method), 144
get_image() (traitsui.tabular_adapter.TabularAdapter

method), 150
get_item() (traitsui.list_str_adapter.ListStrAdapter

method), 139
get_item() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_item() (traitsui.ui_editors.array_view_editor.ArrayViewAdapter

method), 122
get_item() (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

method), 122
get_label() (traitsui.group.Group method), 128
get_label() (traitsui.item.Item method), 136
get_label() (traitsui.table_column.TableColumn method),

144
get_label() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_label() (traitsui.tree_node.ITreeNode method), 158
get_label() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_label() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 162
get_label() (traitsui.tree_node.MultiTreeNode method),

164
get_label() (traitsui.tree_node.ObjectTreeNode method),

166
get_label() (traitsui.tree_node.TreeNode method), 168
get_maximum() (traitsui.table_column.TableColumn

method), 144
get_menu() (traitsui.table_column.NumericColumn

method), 143
get_menu() (traitsui.table_column.TableColumn

method), 144
get_menu() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_menu() (traitsui.tree_node.ITreeNode method), 158
get_menu() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_menu() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 163
get_menu() (traitsui.tree_node.MultiTreeNode method),

164
get_menu() (traitsui.tree_node.ObjectTreeNode method),

166
get_menu() (traitsui.tree_node.TreeNode method), 168
get_name() (traitsui.instance_choice.InstanceChoice

method), 135
get_name() (traitsui.instance_choice.InstanceChoiceItem

method), 135
get_name() (traitsui.instance_choice.InstanceFactoryChoice

method), 135
get_name() (traitsui.tree_node.ITreeNode method), 158
get_name() (traitsui.tree_node.ITreeNodeAdapter

method), 160
get_name() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 163
get_name() (traitsui.tree_node.MultiTreeNode method),

164
get_name() (traitsui.tree_node.ObjectTreeNode method),

166
get_name() (traitsui.tree_node.TreeNode method), 168
get_object() (traitsui.instance_choice.InstanceChoice

method), 135
get_object() (traitsui.instance_choice.InstanceChoiceItem

Index 229

TraitsUI 4 User Manual, Release 6.0.0

method), 135
get_object() (traitsui.instance_choice.InstanceFactoryChoice

method), 135
get_object() (traitsui.table_column.TableColumn

method), 144
get_perform_handlers() (traitsui.handler.Controller

method), 130
get_perform_handlers() (traitsui.handler.Handler

method), 131
get_prefs() (traitsui.ui.UI method), 171
get_raw_value() (traitsui.table_column.ExpressionColumn

method), 142
get_raw_value() (traitsui.table_column.ObjectColumn

method), 143
get_renderer() (traitsui.table_column.TableColumn

method), 144
get_rgb_color_editor() (in module trait-

sui.null.rgb_color_trait), 117
get_row_label() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_shadow() (traitsui.group.Group method), 128
get_style() (traitsui.table_column.ObjectColumn

method), 143
get_text() (traitsui.list_str_adapter.ListStrAdapter

method), 139
get_text() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_text_color() (traitsui.list_str_adapter.ListStrAdapter

method), 139
get_text_color() (traitsui.table_column.NumericColumn

method), 143
get_text_color() (traitsui.table_column.TableColumn

method), 144
get_text_color() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_text_font() (traitsui.table_column.NumericColumn

method), 143
get_text_font() (traitsui.table_column.TableColumn

method), 144
get_tooltip() (traitsui.table_column.TableColumn

method), 144
get_tooltip() (traitsui.tabular_adapter.TabularAdapter

method), 151
get_tooltip() (traitsui.tree_node.ITreeNode method), 158
get_tooltip() (traitsui.tree_node.ITreeNodeAdapter

method), 161
get_tooltip() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 163
get_tooltip() (traitsui.tree_node.ObjectTreeNode

method), 166
get_tooltip() (traitsui.tree_node.TreeNode method), 168
get_type() (traitsui.table_column.NumericColumn

method), 143
get_type() (traitsui.table_column.TableColumn method),

144
get_ui_db() (traitsui.ui.UI method), 172
get_undo_item() (traitsui.editor.Editor method), 126
get_value() (traitsui.color_column.ColorColumn

method), 125
get_value() (traitsui.table_column.ListColumn method),

142
get_value() (traitsui.table_column.NumericColumn

method), 143
get_value() (traitsui.table_column.ObjectColumn

method), 143
get_value() (traitsui.table_filter.GenericTableFilterRuleAndOrColumn

method), 145
get_value() (traitsui.table_filter.GenericTableFilterRuleEnabledColumn

method), 146
get_vertical_alignment() (trait-

sui.table_column.NumericColumn method),
143

get_vertical_alignment() (trait-
sui.table_column.TableColumn method),
144

get_view() (traitsui.instance_choice.InstanceChoiceItem
method), 135

get_view() (traitsui.table_column.TableColumn method),
144

get_view() (traitsui.tree_node.ITreeNode method), 158
get_view() (traitsui.tree_node.ITreeNodeAdapter

method), 161
get_view() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 163
get_view() (traitsui.tree_node.MultiTreeNode method),

164
get_view() (traitsui.tree_node.ObjectTreeNode method),

166
get_view() (traitsui.tree_node.TreeNode method), 168
get_width() (traitsui.table_column.TableColumn

method), 144
get_width() (traitsui.tabular_adapter.TabularAdapter

method), 151
Group, 9, 97

attributes, 9
examples, View, 8
subclasses, 10

Group (class in traitsui.group), 128
gt() (traitsui.table_filter.GenericTableFilterRule method),

145
GUIToolkit (class in traitsui.null.toolkit), 117

H
Handler, 97
Handler (class in traitsui.handler), 130
handler attribute, 15
Handler class

as MVC controller, 2

230 Index

TraitsUI 4 User Manual, Release 6.0.0

has_children() (traitsui.tree_node.ITreeNode method),
158

has_children() (traitsui.tree_node.ITreeNodeAdapter
method), 161

has_children() (traitsui.tree_node.ITreeNodeAdapterBridge
method), 163

has_children() (traitsui.tree_node.MultiTreeNode
method), 164

has_children() (traitsui.tree_node.ObjectTreeNode
method), 166

has_children() (traitsui.tree_node.TreeNode method), 168
has_focus attribute, 6
HasTraits, 97
HasTraits class

as MVC model, 2
Heading (class in traitsui.item), 136
Heading class, 7
height attribute

Item, 6
View, 14

help attribute
Group, 10
Item, 6
View, 16

help_id attribute
Group, 10
Item, 6
View, 16

help_template() (in module traitsui.help_template), 134
HelpAction (in module traitsui.menu), 141
HelpButton (in module traitsui.menu), 141
HelpTemplate (class in traitsui.help_template), 133
HFlow, 10
HFlow (class in traitsui.group), 128
HGroup, 10
HGroup (class in traitsui.group), 128
hide_root (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
history_editor() (in module trait-

sui.editors.history_editor), 106
history_editor() (traitsui.toolkit.Toolkit method), 154
hook_events() (traitsui.toolkit.Toolkit method), 154
HSplit, 10
HSplit (class in traitsui.group), 129
html_editor() (in module traitsui.editors.html_editor), 106
html_editor() (traitsui.toolkit.Toolkit method), 154

I
icon attribute, 14
icon_size (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
id attribute

Group, 10
Item, 6

View, 16
ignored_traits (traitsui.table_filter.GenericTableFilterRule

attribute), 145
ignored_traits (traitsui.table_filter.TableFilter attribute),

147
IListStrAdapter (class in traitsui.list_str_adapter), 138
image (traitsui.list_str_adapter.ListStrAdapter attribute),

139
image (traitsui.tabular_adapter.TabularAdapter attribute),

151
image attribute, 6

Group export attribute
Group, 9

View, 14
image_editor() (traitsui.toolkit.Toolkit method), 154
image_enum_editor() (traitsui.toolkit.Toolkit method),

154
image_size() (traitsui.toolkit.Toolkit method), 154
ImageEditor (class in traitsui.editors.image_editor), 107
ImageEnumEditor (in module trait-

sui.editors.image_enum_editor), 107
imports attribute, 15
Include

examples, 22
object, 22

Include (class in traitsui.include), 134
indent() (traitsui.editors.html_editor.ToolkitEditorFactory

method), 106
index (traitsui.list_str_adapter.AnIListStrAdapter at-

tribute), 137
index (traitsui.list_str_adapter.IListStrAdapter attribute),

138
index (traitsui.list_str_adapter.ListStrAdapter attribute),

139
index() (traitsui.editors.table_editor.ReversedList

method), 110
index_alignment (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

attribute), 122
index_text (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

attribute), 122
info() (traitsui.null.font_trait.TraitFont method), 117
info_action_handler() (trait-

sui.tests.test_handler.SampleHandler method),
120

info_action_handler() (trait-
sui.tests.test_handler.SampleObject method),
120

info_text (traitsui.ui_traits.ATheme attribute), 173
info_text (traitsui.ui_traits.ViewStatus attribute), 173
init() (traitsui.delegating_handler.DelegatingHandler

method), 125
init() (traitsui.editor.Editor method), 126
init() (traitsui.editor_factory.EditorFactory method), 127
init() (traitsui.editors.image_enum_editor.ToolkitEditorFactory

Index 231

TraitsUI 4 User Manual, Release 6.0.0

method), 107
init() (traitsui.editors.range_editor.ToolkitEditorFactory

method), 108
init() (traitsui.editors.tuple_editor.SimpleEditor method),

114
init() (traitsui.extras.saving.SaveHandler method), 116
init() (traitsui.handler.Handler method), 131
init() (traitsui.ui_editor.UIEditor method), 172
init_info() (traitsui.handler.Controller method), 130
init_info() (traitsui.handler.Handler method), 131
init_ui() (traitsui.ui_editor.UIEditor method), 173
insert() (traitsui.editors.table_editor.ReversedList

method), 111
insert() (traitsui.list_str_adapter.ListStrAdapter method),

139
insert() (traitsui.tabular_adapter.TabularAdapter method),

151
insert() (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

method), 122
insert_child() (traitsui.tree_node.ITreeNode method), 158
insert_child() (traitsui.tree_node.ITreeNodeAdapter

method), 161
insert_child() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 163
insert_child() (traitsui.tree_node.ObjectTreeNode

method), 166
insert_child() (traitsui.tree_node.TreeNode method), 168
instance, 97
instance_editor() (traitsui.toolkit.Toolkit method), 154
InstanceChoice (class in traitsui.instance_choice), 135
InstanceChoiceItem (class in traitsui.instance_choice),

135
InstanceDropChoice (class in traitsui.instance_choice),

135
InstanceEditor (in module trait-

sui.editors.instance_editor), 107
InstanceFactoryChoice (class in traitsui.instance_choice),

135
IntNode (class in traitsui.value_tree), 176
is_addable() (traitsui.tree_node.TreeNode method), 168
is_auto_editable() (traitsui.table_column.TableColumn

method), 144
is_button() (traitsui.base_panel.BasePanel method), 124
is_cacheable (traitsui.list_str_adapter.AnIListStrAdapter

attribute), 137
is_cacheable (traitsui.list_str_adapter.IListStrAdapter at-

tribute), 138
is_cacheable (traitsui.tabular_adapter.AnITabularAdapter

attribute), 147
is_cacheable (traitsui.tabular_adapter.ITabularAdapter at-

tribute), 147
is_compatible() (traitsui.instance_choice.InstanceChoice

method), 135
is_compatible() (traitsui.instance_choice.InstanceChoiceItem

method), 135
is_compatible() (traitsui.instance_choice.InstanceFactoryChoice

method), 135
is_droppable() (traitsui.instance_choice.InstanceChoiceItem

method), 135
is_droppable() (traitsui.instance_choice.InstanceFactoryChoice

method), 135
is_droppable() (traitsui.table_column.NumericColumn

method), 143
is_droppable() (traitsui.table_column.ObjectColumn

method), 143
is_droppable() (traitsui.table_column.TableColumn

method), 144
is_editable() (traitsui.extras.edit_column.EditColumn

method), 115
is_editable() (traitsui.table_column.NumericColumn

method), 143
is_editable() (traitsui.table_column.TableColumn

method), 145
is_includable() (traitsui.group.Group method), 128
is_includable() (traitsui.item.Item method), 136
is_includable() (traitsui.view_element.ViewElement

method), 179
is_node_for() (traitsui.tree_node.ObjectTreeNode

method), 166
is_node_for() (traitsui.tree_node.TreeNode method), 168
is_selectable() (traitsui.instance_choice.InstanceChoiceItem

method), 135
is_selectable() (traitsui.instance_choice.InstanceFactoryChoice

method), 135
is_spacer() (traitsui.item.Item method), 136
is_true() (traitsui.table_filter.GenericTableFilterRule

method), 145
ITabularAdapter (class in traitsui.tabular_adapter), 147
italics (traitsui.editors.styled_date_editor.CellFormat at-

tribute), 110
Item, 6, 97

attributes, 6
object, 6
subclasses, 7

Item (class in traitsui.item), 136
item (traitsui.list_str_adapter.AnIListStrAdapter at-

tribute), 138
item (traitsui.list_str_adapter.IListStrAdapter attribute),

138
item (traitsui.list_str_adapter.ListStrAdapter attribute),

139
item (traitsui.tabular_adapter.AnITabularAdapter at-

tribute), 147
item (traitsui.tabular_adapter.ITabularAdapter attribute),

147
item (traitsui.tabular_adapter.TabularAdapter attribute),

152
ITreeNode (class in traitsui.tree_node), 157

232 Index

TraitsUI 4 User Manual, Release 6.0.0

ITreeNodeAdapter (class in traitsui.tree_node), 159
ITreeNodeAdapterBridge (class in traitsui.tree_node),

161

K
key() (traitsui.table_column.ListColumn method), 142
key() (traitsui.table_column.ObjectColumn method), 143
key_binding_editor() (in module trait-

sui.editors.key_binding_editor), 107
key_binding_editor() (traitsui.toolkit.Toolkit method),

154
key_binding_for() (traitsui.key_bindings.KeyBindings

method), 137
key_bindings attribute, 15
key_event_to_name() (traitsui.toolkit.Toolkit method),

154
key_handler() (traitsui.ui.UI method), 172
KeyBinding (class in traitsui.key_bindings), 137
KeyBindings (class in traitsui.key_bindings), 137
kind attribute, 11
kiva_font_trait() (traitsui.null.toolkit.GUIToolkit

method), 117
kiva_font_trait() (traitsui.toolkit.Toolkit method), 154
klass (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 123

L
Label (class in traitsui.item), 136
label attribute

Group, 9
Item, 6

Label class, 7
label_map (traitsui.tabular_adapter.TabularAdapter at-

tribute), 152
layout attribute, 9
le() (traitsui.table_filter.GenericTableFilterRule method),

145
len() (traitsui.list_str_adapter.ListStrAdapter method),

140
len() (traitsui.tabular_adapter.TabularAdapter method),

152
len() (traitsui.ui_editors.array_view_editor.ArrayViewAdapter

method), 122
lines_mode (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 112
list_editor() (traitsui.toolkit.Toolkit method), 154
list_str_editor() (traitsui.toolkit.Toolkit method), 154
ListColumn (class in traitsui.table_column), 142
ListEditor (in module traitsui.editors.list_editor), 107
ListItemProxy (class in traitsui.editors.list_editor), 107
ListNode (class in traitsui.value_tree), 176
ListStrAdapter (class in traitsui.list_str_adapter), 138
ListStrEditor (class in traitsui.editors.list_str_editor), 108
ListUndoItem (class in traitsui.undo), 174

live, 97
definition, 11
window kind, 11

LiveButtons, 14
livemodal, 97
livemodal window kind, 11
log_change() (traitsui.editor.Editor method), 126
lt() (traitsui.table_filter.GenericTableFilterRule method),

145

M
menu (traitsui.tabular_adapter.TabularAdapter attribute),

152
menubar attribute, 15
MenuTableFilter (class in traitsui.table_filter), 146
merge() (traitsui.key_bindings.KeyBindings method),

137
merge_undo() (traitsui.undo.AbstractUndoItem method),

174
merge_undo() (traitsui.undo.ListUndoItem method), 174
merge_undo() (traitsui.undo.UndoItem method), 175
Message (class in traitsui.message), 141
message() (in module traitsui.message), 142
MethodNode (class in traitsui.value_tree), 176
modal, 97

definition, 11
window kind, 11

ModalButtons, 14
model, 2, 97
Model-View-Controller, 2
model_view attribute, 15
ModelView (built-in class), 25
ModelView (class in traitsui.handler), 133
multi-object Views, 21

examples, 21
multi_nodes (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
multiple Views, 18

examples, 18
MultiTreeNode (class in traitsui.tree_node), 163
MultiValueTreeNodeObject (class in traitsui.value_tree),

176
MVC, 97
MVC design pattern, 2

N
name (traitsui.tabular_adapter.TabularAdapter attribute),

152
name attribute, 6
named_value() (traitsui.editor_factory.EditorFactory

method), 127
ne() (traitsui.table_filter.GenericTableFilterRule method),

145
NoButtons, 14

Index 233

TraitsUI 4 User Manual, Release 6.0.0

NoButtons (in module traitsui.menu), 141
node_for() (traitsui.value_tree.SingleValueTreeNodeObject

method), 177
nodes (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
NoneNode (class in traitsui.value_tree), 176
nonmodal, 97
nonmodal window kind, 11
null toolkit, 3
null_editor() (in module traitsui.editors.null_editor), 108
null_editor() (traitsui.toolkit.Toolkit method), 154
NumericColumn (class in traitsui.table_column), 142

O
object, 97

Include, 22
Item, 6
View, 4, 6

object (traitsui.tabular_adapter.TabularAdapter attribute),
152

object attribute
Group, 9
View, 15

object_action_handler() (trait-
sui.tests.test_handler.SampleObject method),
120

ObjectColumn (class in traitsui.table_column), 143
ObjectNode (class in traitsui.value_tree), 176
ObjectTreeNode (class in traitsui.tree_node), 165
odd_bg_color (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 140
odd_bg_color (traitsui.tabular_adapter.TabularAdapter at-

tribute), 152
odd_text_color (traitsui.list_str_adapter.ListStrAdapter

attribute), 140
odd_text_color (traitsui.tabular_adapter.TabularAdapter

attribute), 152
OKButton, 13
OKButton (in module traitsui.menu), 141
OKCancelsButtons, 14
on_activated (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
on_apply attribute, 15
on_click (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
on_click() (traitsui.table_column.TableColumn method),

145
on_dclick (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
on_dclick() (traitsui.table_column.TableColumn

method), 145
on_help_call() (in module traitsui.help), 133
on_hover (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113

on_select (traitsui.editors.tree_editor.ToolkitEditorFactory
attribute), 113

open_view_for() (traitsui.handler.Handler method), 131
ordered_set_editor() (traitsui.toolkit.Toolkit method), 154
orientation (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
orientation attribute, 9
OtherNode (class in traitsui.value_tree), 177

P
padding attribute

Group, 9
Item, 6

panel, 12, 97
window kind, 11

Parent (class in traitsui.tests.test_regression), 120
parse_block() (traitsui.editors.html_editor.ToolkitEditorFactory

method), 106
parse_extended_name() (traitsui.editor.Editor method),

126
parse_list() (traitsui.editors.html_editor.ToolkitEditorFactory

method), 106
parse_text() (traitsui.editors.html_editor.ToolkitEditorFactory

method), 106
perform() (traitsui.base_panel.BasePanel method), 124
perform() (traitsui.editors.table_editor.BaseTableEditor

method), 110
perform() (traitsui.handler.Handler method), 131
perform() (traitsui.tests.test_handler.PyfaceAction

method), 119
perform() (traitsui.tests.test_handler.TraitsUIAction

method), 120
plot_editor() (traitsui.toolkit.Toolkit method), 154
pop_level() (traitsui.ui.UI method), 172
PopupEditor (class in traitsui.editors.popup_editor), 108
position() (traitsui.handler.Handler method), 132
position() (traitsui.toolkit.Toolkit method), 154
predefined trait type, 97
prepare() (traitsui.editor.Editor method), 126
prepare_ui() (traitsui.ui.UI method), 172
ProgressEditor (in module trait-

sui.editors.progress_editor), 108
promptForSave() (traitsui.extras.saving.SaveHandler

method), 116
push_level() (traitsui.ui.UI method), 172
PyfaceAction (class in traitsui.tests.test_handler), 119

Q
Qt toolkit, 3

R
raise_to_debug() (in module traitsui.api), 123
range_check() (in module traitsui.null.rgb_color_trait),

117

234 Index

TraitsUI 4 User Manual, Release 6.0.0

range_editor() (traitsui.toolkit.Toolkit method), 154
RangeEditor (in module traitsui.editors.range_editor),

108
Readonly (class in traitsui.item), 136
Readonly class, 7
readonly_editor() (traitsui.editor_factory.EditorFactory

method), 127
readonly_editor() (trait-

sui.editors.csv_list_editor.CSVListEditor
method), 103

readonly_editor() (trait-
sui.editors.default_override.DefaultOverride
method), 104

readonly_editor() (trait-
sui.editors.table_editor.ToolkitEditorFactory
method), 111

rebuild_ui() (traitsui.toolkit.Toolkit method), 154
recyclable_traits (traitsui.ui.UI attribute), 172
recycle() (traitsui.ui.UI method), 172
redo() (traitsui.undo.AbstractUndoItem method), 174
redo() (traitsui.undo.ListUndoItem method), 174
redo() (traitsui.undo.UndoHistory method), 174
redo() (traitsui.undo.UndoHistoryUndoItem method),

175
redo() (traitsui.undo.UndoItem method), 175
RedoAction (in module traitsui.menu), 141
refresh (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
remove() (traitsui.ui.Dispatcher method), 171
replace_include() (traitsui.group.Group method), 128
replace_include() (traitsui.view.View method), 179
replace_include() (traitsui.view_element.ViewElement

method), 179
reset() (traitsui.ui.UI method), 172
resizable attribute, 6

View, 14
restore_prefs() (traitsui.editor.Editor method), 126
restore_prefs() (traitsui.ui.UI method), 172
restore_prefs() (traitsui.ui_editor.UIEditor method), 173
ReversedList (class in traitsui.editors.table_editor), 110
revert() (traitsui.handler.Handler method), 132
revert() (traitsui.tests.test_handler.SampleHandler

method), 120
revert() (traitsui.undo.UndoHistory method), 174
RevertAction (in module traitsui.menu), 141
RevertButton, 13
RevertButton (in module traitsui.menu), 141
rgb_color_editor() (traitsui.toolkit.Toolkit method), 154
rgb_color_trait() (traitsui.null.toolkit.GUIToolkit

method), 117
rgb_color_trait() (traitsui.toolkit.Toolkit method), 154
rgba_color_editor() (traitsui.toolkit.Toolkit method), 154
rgba_color_trait() (traitsui.toolkit.Toolkit method), 154

RGBColorEditor() (in module trait-
sui.editors.rgb_color_editor), 109

RGBColorTrait() (in module traitsui.toolkit_traits), 157
RootNode (class in traitsui.value_tree), 177
route_event() (traitsui.toolkit.Toolkit method), 154
route_event() (traitsui.ui.UI method), 172
row (traitsui.tabular_adapter.AnITabularAdapter at-

tribute), 147
row (traitsui.tabular_adapter.ITabularAdapter attribute),

148
row (traitsui.tabular_adapter.TabularAdapter attribute),

152
row_label_name (traitsui.tabular_adapter.TabularAdapter

attribute), 152
RuleTableFilter (class in traitsui.table_filter), 146

S
SampleHandler (class in traitsui.tests.test_handler), 120
SampleObject (class in traitsui.tests.test_handler), 120
save() (traitsui.extras.saving.CanSaveMixin method), 115
save() (traitsui.extras.saving.SaveHandler method), 116
save_prefs() (traitsui.editor.Editor method), 126
save_prefs() (traitsui.ui.UI method), 172
save_prefs() (traitsui.ui_editor.UIEditor method), 173
save_window() (traitsui.toolkit.Toolkit method), 154
saveAs() (traitsui.extras.saving.SaveHandler method),

116
SaveHandler (class in traitsui.extras.saving), 115
scrollable attribute, 14
ScrubberEditor (class in traitsui.editors.scrubber_editor),

109
SearchEditor (class in traitsui.editors.search_editor), 109
SearchStackItem (class in traitsui.view_elements), 180
select() (traitsui.tree_node.ITreeNode method), 158
select() (traitsui.tree_node.ITreeNodeAdapter method),

161
select() (traitsui.tree_node.ITreeNodeAdapterBridge

method), 163
select() (traitsui.tree_node.MultiTreeNode method), 164
select() (traitsui.tree_node.ObjectTreeNode method), 166
select() (traitsui.tree_node.TreeNode method), 168
selected (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
selected attribute, 9
selection_mode (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
Separator (in module traitsui.menu), 141
set_container() (traitsui.group.Group method), 128
set_container() (traitsui.group.ShadowGroup method),

129
set_content() (traitsui.view.View method), 179
set_focus() (traitsui.editor.Editor method), 126
set_icon() (traitsui.toolkit.Toolkit method), 154
set_label() (traitsui.tree_node.ITreeNode method), 158

Index 235

TraitsUI 4 User Manual, Release 6.0.0

set_label() (traitsui.tree_node.ITreeNodeAdapter
method), 161

set_label() (traitsui.tree_node.ITreeNodeAdapterBridge
method), 163

set_label() (traitsui.tree_node.MultiTreeNode method),
164

set_label() (traitsui.tree_node.ObjectTreeNode method),
166

set_label() (traitsui.tree_node.TreeNode method), 168
set_menu_context() (trait-

sui.editors.table_editor.BaseTableEditor
method), 110

set_prefs() (traitsui.ui.UI method), 172
set_text() (traitsui.list_str_adapter.ListStrAdapter

method), 140
set_text() (traitsui.tabular_adapter.TabularAdapter

method), 152
set_title() (traitsui.toolkit.Toolkit method), 154
set_value() (traitsui.table_column.ListColumn method),

142
set_value() (traitsui.table_column.NumericColumn

method), 143
set_value() (traitsui.table_column.ObjectColumn

method), 143
setattr() (traitsui.handler.Handler method), 132
SetEditor (in module traitsui.editors.set_editor), 109
SetNode (class in traitsui.value_tree), 177
ShadowGroup (class in traitsui.group), 129
shared_editor (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
shell_editor() (traitsui.toolkit.Toolkit method), 155
ShellEditor (in module traitsui.editors.shell_editor), 109
show() (traitsui.message.AutoCloseMessage method),

141
show_border attribute, 9
show_help() (in module traitsui.help), 133
show_help() (traitsui.handler.Handler method), 132
show_help() (traitsui.tests.test_handler.SampleHandler

method), 120
show_help() (traitsui.toolkit.Toolkit method), 155
show_icons (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
show_index (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 123
show_label attribute, 6
show_labels attribute, 9
show_left attribute, 9
show_titles (traitsui.ui_editors.data_frame_editor.DataFrameEditor

attribute), 123
simple_editor() (traitsui.editor_factory.EditorFactory

method), 127
simple_editor() (traitsui.editors.csv_list_editor.CSVListEditor

method), 104
simple_editor() (traitsui.editors.default_override.DefaultOverride

method), 104
simple_editor() (traitsui.editors.range_editor.ToolkitEditorFactory

method), 108
SimpleEditor (class in traitsui.editors.tuple_editor), 114
SingleValueTreeNodeObject (class in traitsui.value_tree),

177
skip_event() (traitsui.toolkit.Toolkit method), 155
Spring (class in traitsui.item), 136
Spring class, 7
springy attribute

Group, 9
Item, 6

StandardMenuBar (in module traitsui.menu), 141
starts_with() (traitsui.table_filter.GenericTableFilterRule

method), 145
statusbar attribute, 14
StatusItem (class in traitsui.ui_traits), 173
string_value() (traitsui.editor.Editor method), 126
StringNode (class in traitsui.value_tree), 178
style (traitsui.color_column.ColorColumn attribute), 125
style attribute

Group, 9
Item, 6
View, 14

StyledDateEditor (in module trait-
sui.editors.styled_date_editor), 110

subclasses
Group, 10
Item, 7

subpanel, 12, 97
window kind, 11

sync_value() (traitsui.editor.Editor method), 127
sync_view() (traitsui.ui.UI method), 172

T
Tabbed, 10
Tabbed (class in traitsui.group), 129
table_editor() (traitsui.toolkit.Toolkit method), 155
TableColumn (class in traitsui.table_column), 143
TableEditor (in module traitsui.editors.table_editor), 111
TableFilter (class in traitsui.table_filter), 146
tabular_editor() (traitsui.toolkit.Toolkit method), 155
TabularAdapter (class in traitsui.tabular_adapter), 148
TabularEditor (class in traitsui.editors.tabular_editor),

111
target_name() (traitsui.table_column.ObjectColumn

method), 143
test_attribute_error() (trait-

sui.tests.test_regression.TestRegression
method), 121

test_close_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

236 Index

TraitsUI 4 User Manual, Release 6.0.0

test_creation_sets_shadow_first() (trait-
sui.tests.test_shadow_group.TestShadowGroup
method), 121

test_default_toolkit() (trait-
sui.tests.test_toolkit.TestToolkit method),
121

test_editor_on_delegates_to_event() (trait-
sui.tests.test_regression.TestRegression
method), 121

test_help_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_list_str_adapter_length() (in module trait-
sui.tests.editors.test_liststr_editor), 118

test_nonexistent_toolkit() (trait-
sui.tests.test_toolkit.TestToolkit method),
121

test_nonstandard_toolkit() (trait-
sui.tests.test_toolkit.TestToolkit method),
121

test_perform_action_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_perform_click_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_perform_info_action_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_perform_object_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_perform_pyface_action() (trait-
sui.tests.test_handler.TestHandler method),
120

test_perform_traitsui_action() (trait-
sui.tests.test_handler.TestHandler method),
120

test_redo_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_revert_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

test_undo_handler() (trait-
sui.tests.test_handler.TestHandler method),
120

TestHandler (class in traitsui.tests.test_handler), 120
TestRegression (class in traitsui.tests.test_regression),

121
TestShadowGroup (class in trait-

sui.tests.test_shadow_group), 121
TestToolkit (class in traitsui.tests.test_toolkit), 121
text (traitsui.tabular_adapter.TabularAdapter attribute),

152
text (traitsui.ui_editors.data_frame_editor.DataFrameAdapter

attribute), 122
text_color (traitsui.list_str_adapter.ListStrAdapter at-

tribute), 140
text_color (traitsui.tabular_adapter.TabularAdapter

attribute), 152
text_editor() (traitsui.editor_factory.EditorFactory

method), 127
text_editor() (traitsui.editors.csv_list_editor.CSVListEditor

method), 104
text_editor() (traitsui.editors.default_override.DefaultOverride

method), 104
text_editor() (traitsui.toolkit.Toolkit method), 155
TextEditor (in module traitsui.editors.text_editor), 111
Theme (class in traitsui.theme), 153
TimeEditor (class in traitsui.editors.time_editor), 111
title attribute, 14
title_editor() (traitsui.toolkit.Toolkit method), 155
TitleEditor (in module traitsui.editors.title_editor), 111
tno_activated() (traitsui.tree_node.TreeNodeObject

method), 169
tno_allows_children() (trait-

sui.tree_node.TreeNodeObject method),
169

tno_allows_children() (trait-
sui.value_tree.MultiValueTreeNodeObject
method), 176

tno_allows_children() (trait-
sui.value_tree.SingleValueTreeNodeObject
method), 177

tno_append_child() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_add() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_auto_close() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_auto_open() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_copy() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_copy() (traitsui.value_tree.SingleValueTreeNodeObject
method), 177

tno_can_delete() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_delete() (traitsui.value_tree.DictNode method),
175

tno_can_delete() (traitsui.value_tree.ListNode method),
176

tno_can_delete() (traitsui.value_tree.SingleValueTreeNodeObject
method), 177

tno_can_delete_me() (traitsui.tree_node.TreeNodeObject
method), 169

tno_can_insert() (traitsui.tree_node.TreeNodeObject

Index 237

TraitsUI 4 User Manual, Release 6.0.0

method), 169
tno_can_insert() (traitsui.value_tree.ListNode method),

176
tno_can_insert() (traitsui.value_tree.SingleValueTreeNodeObject

method), 177
tno_can_rename() (traitsui.tree_node.TreeNodeObject

method), 169
tno_can_rename() (trait-

sui.value_tree.SingleValueTreeNodeObject
method), 177

tno_can_rename_me() (trait-
sui.tree_node.TreeNodeObject method),
169

tno_click() (traitsui.tree_node.TreeNodeObject method),
169

tno_confirm_delete() (traitsui.tree_node.TreeNodeObject
method), 169

tno_dclick() (traitsui.tree_node.TreeNodeObject
method), 169

tno_delete_child() (traitsui.tree_node.TreeNodeObject
method), 170

tno_drop_object() (traitsui.tree_node.TreeNodeObject
method), 170

tno_get_add() (traitsui.tree_node.TreeNodeObject
method), 170

tno_get_children() (traitsui.tree_node.TreeNodeObject
method), 170

tno_get_children() (traitsui.value_tree.DictNode
method), 176

tno_get_children() (traitsui.value_tree.MethodNode
method), 176

tno_get_children() (traitsui.value_tree.ObjectNode
method), 177

tno_get_children() (traitsui.value_tree.RootNode
method), 177

tno_get_children() (traitsui.value_tree.TraitsNode
method), 178

tno_get_children() (traitsui.value_tree.TupleNode
method), 178

tno_get_children_id() (trait-
sui.tree_node.TreeNodeObject method),
170

tno_get_drag_object() (trait-
sui.tree_node.TreeNodeObject method),
170

tno_get_icon() (traitsui.tree_node.TreeNodeObject
method), 170

tno_get_icon() (traitsui.value_tree.SingleValueTreeNodeObject
method), 177

tno_get_icon_path() (traitsui.tree_node.TreeNodeObject
method), 170

tno_get_label() (traitsui.tree_node.TreeNodeObject
method), 170

tno_get_label() (traitsui.value_tree.SingleValueTreeNodeObject

method), 178
tno_get_menu() (traitsui.tree_node.TreeNodeObject

method), 170
tno_get_name() (traitsui.tree_node.TreeNodeObject

method), 170
tno_get_tooltip() (traitsui.tree_node.TreeNodeObject

method), 170
tno_get_view() (traitsui.tree_node.TreeNodeObject

method), 170
tno_has_children() (traitsui.tree_node.TreeNodeObject

method), 170
tno_has_children() (traitsui.value_tree.MethodNode

method), 176
tno_has_children() (trait-

sui.value_tree.MultiValueTreeNodeObject
method), 176

tno_has_children() (traitsui.value_tree.ObjectNode
method), 177

tno_has_children() (trait-
sui.value_tree.SingleValueTreeNodeObject
method), 178

tno_has_children() (traitsui.value_tree.TraitsNode
method), 178

tno_has_children() (traitsui.value_tree.TupleNode
method), 178

tno_insert_child() (traitsui.tree_node.TreeNodeObject
method), 170

tno_is_node_for() (traitsui.tree_node.TreeNodeObject
method), 170

tno_select() (traitsui.tree_node.TreeNodeObject method),
170

tno_set_label() (traitsui.tree_node.TreeNodeObject
method), 170

tno_set_label() (traitsui.value_tree.SingleValueTreeNodeObject
method), 178

tno_when_children_changed() (trait-
sui.tree_node.TreeNodeObject method),
170

tno_when_children_changed() (trait-
sui.value_tree.TraitsNode method), 178

tno_when_children_replaced() (trait-
sui.tree_node.TreeNodeObject method),
170

tno_when_children_replaced() (trait-
sui.value_tree.TraitsNode method), 178

tno_when_label_changed() (trait-
sui.tree_node.TreeNodeObject method),
170

toolbar attribute, 15
toolkit

environment variable, 3
flag, 3
selection, 3

Toolkit (class in traitsui.toolkit), 153

238 Index

TraitsUI 4 User Manual, Release 6.0.0

toolkit() (in module traitsui.toolkit), 156
toolkit_object() (in module traitsui.toolkit), 156
ToolkitEditorFactory (class in trait-

sui.editors.boolean_editor), 101
ToolkitEditorFactory (class in trait-

sui.editors.button_editor), 102
ToolkitEditorFactory (class in trait-

sui.editors.check_list_editor), 102
ToolkitEditorFactory (class in trait-

sui.editors.code_editor), 102
ToolkitEditorFactory (class in trait-

sui.editors.color_editor), 102
ToolkitEditorFactory (class in trait-

sui.editors.compound_editor), 103
ToolkitEditorFactory (class in trait-

sui.editors.custom_editor), 104
ToolkitEditorFactory (class in trait-

sui.editors.directory_editor), 105
ToolkitEditorFactory (class in traitsui.editors.dnd_editor),

105
ToolkitEditorFactory (class in trait-

sui.editors.drop_editor), 105
ToolkitEditorFactory (class in trait-

sui.editors.enum_editor), 105
ToolkitEditorFactory (class in traitsui.editors.file_editor),

106
ToolkitEditorFactory (class in trait-

sui.editors.font_editor), 106
ToolkitEditorFactory (class in trait-

sui.editors.history_editor), 106
ToolkitEditorFactory (class in trait-

sui.editors.html_editor), 106
ToolkitEditorFactory (class in trait-

sui.editors.image_enum_editor), 107
ToolkitEditorFactory (class in trait-

sui.editors.instance_editor), 107
ToolkitEditorFactory (class in traitsui.editors.list_editor),

107
ToolkitEditorFactory (class in trait-

sui.editors.progress_editor), 108
ToolkitEditorFactory (class in trait-

sui.editors.range_editor), 108
ToolkitEditorFactory (class in trait-

sui.editors.rgb_color_editor), 109
ToolkitEditorFactory (class in traitsui.editors.set_editor),

109
ToolkitEditorFactory (class in trait-

sui.editors.shell_editor), 109
ToolkitEditorFactory (class in trait-

sui.editors.styled_date_editor), 110
ToolkitEditorFactory (class in trait-

sui.editors.table_editor), 111
ToolkitEditorFactory (class in traitsui.editors.text_editor),

111

ToolkitEditorFactory (class in trait-
sui.editors.title_editor), 111

ToolkitEditorFactory (class in traitsui.editors.tree_editor),
112

ToolkitEditorFactory (class in trait-
sui.editors.tuple_editor), 114

ToolkitEditorFactory (class in trait-
sui.editors.value_editor), 114

tooltip (traitsui.tabular_adapter.TabularAdapter attribute),
153

tooltip attribute, 6
trait, 97
trait attribute, 97
trait type, 97
trait_context() (traitsui.handler.Controller method), 130
trait_context() (traitsui.handler.ModelView method), 133
trait_view_for() (traitsui.handler.Handler method), 132
TraitFont (class in traitsui.null.font_trait), 116
TraitObject (class in trait-

sui.tests.editors.test_liststr_editor), 118
Traits, 97
traits_init() (traitsui.ui.UI method), 172
traits_view attribute, 19
TraitsNode (class in traitsui.value_tree), 178
TraitsUI, 97
traitsui (module), 180
traitsui.api (module), 123
traitsui.base_panel (module), 123
traitsui.basic_editor_factory (module), 124
traitsui.color_column (module), 125
traitsui.context_value (module), 125
traitsui.delegating_handler (module), 125
traitsui.dock_window_theme (module), 126
traitsui.editor (module), 126
traitsui.editor_factory (module), 127
traitsui.editors (module), 115
traitsui.editors.api (module), 101
traitsui.editors.boolean_editor (module), 101
traitsui.editors.button_editor (module), 102
traitsui.editors.check_list_editor (module), 102
traitsui.editors.code_editor (module), 102
traitsui.editors.color_editor (module), 102
traitsui.editors.compound_editor (module), 103
traitsui.editors.csv_list_editor (module), 103
traitsui.editors.custom_editor (module), 104
traitsui.editors.date_editor (module), 104
traitsui.editors.default_override (module), 104
traitsui.editors.directory_editor (module), 105
traitsui.editors.dnd_editor (module), 105
traitsui.editors.drop_editor (module), 105
traitsui.editors.enum_editor (module), 105
traitsui.editors.file_editor (module), 105
traitsui.editors.font_editor (module), 106
traitsui.editors.history_editor (module), 106

Index 239

TraitsUI 4 User Manual, Release 6.0.0

traitsui.editors.html_editor (module), 106
traitsui.editors.image_editor (module), 107
traitsui.editors.image_enum_editor (module), 107
traitsui.editors.instance_editor (module), 107
traitsui.editors.key_binding_editor (module), 107
traitsui.editors.list_editor (module), 107
traitsui.editors.list_str_editor (module), 108
traitsui.editors.null_editor (module), 108
traitsui.editors.popup_editor (module), 108
traitsui.editors.progress_editor (module), 108
traitsui.editors.range_editor (module), 108
traitsui.editors.rgb_color_editor (module), 109
traitsui.editors.scrubber_editor (module), 109
traitsui.editors.search_editor (module), 109
traitsui.editors.set_editor (module), 109
traitsui.editors.shell_editor (module), 109
traitsui.editors.styled_date_editor (module), 110
traitsui.editors.table_editor (module), 110
traitsui.editors.tabular_editor (module), 111
traitsui.editors.text_editor (module), 111
traitsui.editors.time_editor (module), 111
traitsui.editors.title_editor (module), 111
traitsui.editors.tree_editor (module), 112
traitsui.editors.tuple_editor (module), 114
traitsui.editors.value_editor (module), 114
traitsui.editors_gen (module), 128
traitsui.extras (module), 116
traitsui.extras.edit_column (module), 115
traitsui.extras.saving (module), 115
traitsui.group (module), 128
traitsui.handler (module), 129
traitsui.help (module), 133
traitsui.help_template (module), 133
traitsui.helper (module), 134
traitsui.image (module), 116
traitsui.include (module), 134
traitsui.instance_choice (module), 135
traitsui.item (module), 135
traitsui.key_bindings (module), 137
traitsui.list_str_adapter (module), 95, 137
traitsui.menu (module), 140
traitsui.message (module), 141
traitsui.mimedata (module), 142
traitsui.null (module), 117
traitsui.null.color_trait (module), 116
traitsui.null.font_trait (module), 116
traitsui.null.rgb_color_trait (module), 117
traitsui.null.toolkit (module), 117
traitsui.table_column (module), 142
traitsui.table_filter (module), 145
traitsui.tabular_adapter (module), 89, 147
traitsui.tests (module), 121
traitsui.tests.editors (module), 119
traitsui.tests.editors.test_liststr_editor (module), 118

traitsui.tests.null_backend (module), 119
traitsui.tests.test_handler (module), 119
traitsui.tests.test_regression (module), 120
traitsui.tests.test_shadow_group (module), 121
traitsui.tests.test_toolkit (module), 121
traitsui.tests.ui_editors (module), 119
traitsui.theme (module), 153
traitsui.toolkit (module), 153
traitsui.toolkit_traits (module), 157
traitsui.tree_node (module), 85, 157
traitsui.ui (module), 171
traitsui.ui_editor (module), 172
traitsui.ui_editors (module), 123
traitsui.ui_editors.array_view_editor (module), 121
traitsui.ui_editors.data_frame_editor (module), 122
traitsui.ui_info (module), 173
traitsui.ui_traits (module), 173
traitsui.undo (module), 174
traitsui.value_tree (module), 175
traitsui.view (module), 178
traitsui.view_element (module), 179
traitsui.view_elements (module), 180
TraitsUIAction (class in traitsui.tests.test_handler), 120
tree_editor() (traitsui.toolkit.Toolkit method), 155
TreeEditor (in module traitsui.editors.tree_editor), 113
TreeNode (class in traitsui.tree_node), 166
TreeNodeObject (class in traitsui.tree_node), 169
tuple_editor() (traitsui.toolkit.Toolkit method), 155
TupleEditor (in module traitsui.editors.tuple_editor), 114
TupleNode (class in traitsui.value_tree), 178
TupleStructure (class in traitsui.editors.tuple_editor), 114

U
UCustom (class in traitsui.item), 136
UCustom class, 7
UI (class in traitsui.ui), 171
ui (traitsui.base_panel.BasePanel attribute), 124
ui(), 20
ui() (traitsui.ui.UI method), 172
ui() (traitsui.view.View method), 179
ui_editor() (traitsui.toolkit.Toolkit method), 155
ui_info() (traitsui.toolkit.Toolkit method), 155
ui_live() (traitsui.toolkit.Toolkit method), 155
ui_livemodal() (traitsui.toolkit.Toolkit method), 155
ui_modal() (traitsui.toolkit.Toolkit method), 155
ui_nonmodal() (traitsui.toolkit.Toolkit method), 155
ui_panel() (traitsui.toolkit.Toolkit method), 155
ui_popover() (traitsui.toolkit.Toolkit method), 155
ui_popup() (traitsui.toolkit.Toolkit method), 155
ui_subpanel() (traitsui.toolkit.Toolkit method), 155
ui_wizard() (traitsui.toolkit.Toolkit method), 155
UIEditor (class in traitsui.ui_editor), 172
UIInfo (class in traitsui.ui_info), 173
UItem (class in traitsui.item), 137

240 Index

TraitsUI 4 User Manual, Release 6.0.0

UItem class, 7
underline (traitsui.editors.styled_date_editor.CellFormat

attribute), 110
undo() (traitsui.undo.AbstractUndoItem method), 174
undo() (traitsui.undo.ListUndoItem method), 174
undo() (traitsui.undo.UndoHistory method), 174
undo() (traitsui.undo.UndoHistoryUndoItem method),

175
undo() (traitsui.undo.UndoItem method), 175
UndoAction (in module traitsui.menu), 141
UndoButton, 13
UndoButton (in module traitsui.menu), 141
UndoHistory (class in traitsui.undo), 174
UndoHistoryUndoItem (class in traitsui.undo), 174
UndoItem (class in traitsui.undo), 175
update_editor() (traitsui.editor.Editor method), 127
update_editor() (traitsui.editors.tuple_editor.SimpleEditor

method), 114
update_editor() (traitsui.ui_editor.UIEditor method), 173
updated attribute, 15
UReadonly (class in traitsui.item), 137
UReadonly class, 7
user_name_for() (in module traitsui.helper), 134

V
validate() (traitsui.extras.saving.CanSaveMixin method),

115
validate() (traitsui.null.font_trait.TraitFont method), 117
validate() (traitsui.ui_traits.ATheme method), 173
validate() (traitsui.ui_traits.ViewStatus method), 173
value (traitsui.list_str_adapter.AnIListStrAdapter at-

tribute), 138
value (traitsui.list_str_adapter.IListStrAdapter attribute),

138
value (traitsui.list_str_adapter.ListStrAdapter attribute),

140
value (traitsui.tabular_adapter.AnITabularAdapter at-

tribute), 147
value (traitsui.tabular_adapter.ITabularAdapter attribute),

148
value (traitsui.tabular_adapter.TabularAdapter attribute),

153
value_editor() (traitsui.toolkit.Toolkit method), 155
ValueEditor (in module traitsui.editors.value_editor), 114
vertical_padding (traitsui.editors.tree_editor.ToolkitEditorFactory

attribute), 113
veto (traitsui.editors.tree_editor.ToolkitEditorFactory at-

tribute), 113
VFlow, 10
VFlow (class in traitsui.group), 129
VFold, 10
VFold (class in traitsui.group), 129
VGrid, 10
VGrid (class in traitsui.group), 129

VGroup, 10
VGroup (class in traitsui.group), 129
View, 97

as MVC view, 2
attributes, 14
contents, 6
context, 16
customizing, 11
default, 16
external, 16, 19
Group examples, 8
internal, 16
methods for displaying, 19
multi-object, 21
multiple, 18
object, 4, 6
ways of displaying, 16

view, 98
View (class in traitsui.view), 178
view (in MVC), 2
view_application() (traitsui.toolkit.Toolkit method), 155
ViewElement, 98
ViewElement (class in traitsui.view_element), 179
ViewElements (class in traitsui.view_elements), 180
ViewHandler (class in traitsui.handler), 133
ViewStatus (class in traitsui.ui_traits), 173
ViewSubElement (class in traitsui.view_element), 180
visible_when (traitsui.menu.Action attribute), 140
visible_when attribute

Group, 10
Item, 6

VSplit, 10
VSplit (class in traitsui.group), 129

W
when_children_changed() (traitsui.tree_node.ITreeNode

method), 158
when_children_changed() (trait-

sui.tree_node.ITreeNodeAdapter method),
161

when_children_changed() (trait-
sui.tree_node.ITreeNodeAdapterBridge
method), 163

when_children_changed() (trait-
sui.tree_node.MultiTreeNode method), 164

when_children_changed() (trait-
sui.tree_node.ObjectTreeNode method),
166

when_children_changed() (traitsui.tree_node.TreeNode
method), 168

when_children_replaced() (traitsui.tree_node.ITreeNode
method), 159

when_children_replaced() (trait-
sui.tree_node.ITreeNodeAdapter method),

Index 241

TraitsUI 4 User Manual, Release 6.0.0

161
when_children_replaced() (trait-

sui.tree_node.ITreeNodeAdapterBridge
method), 163

when_children_replaced() (trait-
sui.tree_node.MultiTreeNode method), 165

when_children_replaced() (trait-
sui.tree_node.ObjectTreeNode method),
166

when_children_replaced() (traitsui.tree_node.TreeNode
method), 168

when_column_labels_change() (trait-
sui.tree_node.ITreeNode method), 159

when_column_labels_change() (trait-
sui.tree_node.ITreeNodeAdapter method),
161

when_column_labels_change() (trait-
sui.tree_node.ITreeNodeAdapterBridge
method), 163

when_column_labels_change() (trait-
sui.tree_node.TreeNode method), 168

when_label_changed() (traitsui.tree_node.ITreeNode
method), 159

when_label_changed() (trait-
sui.tree_node.ITreeNodeAdapter method),
161

when_label_changed() (trait-
sui.tree_node.ITreeNodeAdapterBridge
method), 163

when_label_changed() (trait-
sui.tree_node.MultiTreeNode method), 165

when_label_changed() (trait-
sui.tree_node.ObjectTreeNode method),
166

when_label_changed() (traitsui.tree_node.TreeNode
method), 169

widget, 6, 98
width (traitsui.tabular_adapter.TabularAdapter attribute),

153
width attribute

Item, 6
View, 14

windows
panel, 12
stand-alone, 11
subpanel, 12
wizard, 12

wizard, 12, 98
window kind, 11

word_wrap (traitsui.editors.tree_editor.ToolkitEditorFactory
attribute), 113

wx, 98
wxPython toolkit, 3

X
x attribute, 14

Y
y attribute, 14

242 Index

	TraitsUI 6.0 User Manual
	TraitsUI 6.0 User Manual
	Introduction
	The View and Its Building Blocks
	Customizing a View
	Advanced View Concepts
	Controlling the Interface: the Handler
	Introduction to Trait Editor Factories
	The Predefined Trait Editor Factories
	Advanced Trait Editors
	“Extra” Trait Editor Factories
	Advanced Editor Adapters
	Tips, Tricks and Gotchas
	Appendix I: Glossary of Terms
	Appendix II: Editor Factories for Predefined Traits

	TraitsUI 6.0 API Reference
	traitsui package

	TraitsUI 6.0 Tutorials
	Writing a graphical application for scientific programming using TraitsUI 6.0

	TraitsUI 6.0 Demos
	Standard Editors
	Advanced Demos

	Traits UI Changelog
	Release 6.0.0
	Release 5.2.0
	Release 5.1.0
	Release 5.0.0
	Release 4.5.1
	Release 4.5.0
	Release 4.4.0
	Traits 3.5.0 (Oct 15, 2010)
	Traits 3.4.0 (May 26, 2010)
	Traits 3.3.0 (Feb 24, 2010)
	Traits 3.2.0 (July 15, 2009)

	TraitsUI: Traits-capable windowing framework
	Example
	Important Links
	Installation
	Running the Test Suite

	Indices and tables
	Python Module Index

